Hierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutilized crossbar regions and supports rapid on-chip training within two clock cycles. This research also leverages plasticity mechanisms such as neurogenesis and homeostatic intrinsic plasticity to strengthen the robustness and performance of the SP. The proposed design is benchmarked for image recognition tasks using Modified National Institute of Standards and Technology (MNIST) and Yale faces datasets, and is evaluated using different metrics including entropy, sparseness, and noise robustness. Detailed power analysis at different stages of the SP operations is performed to demonstrate the suitability for mobile platforms.
Germination and field emergence are delayed and their duration is prolonged due to the declining soil temperature during the spring season, which is reflected in the subsequent stages of crop growth, therefore, this study aimed to improve germination. Under a wide range of environmental conditions, a laboratory factorial experiment was carried out to study the effect of seed stimulation with potassium nitrate (distilled water only (0), 2, 4, and 6 mg L-1) and with an aqueous extract of licorice roots (distilled water only (0), 3, 6, and 9 g L-1) on the seed viability and vigor. The laboratory experiment was carried out according to the Completely Randomized Design (CRD) with four repetitions. The results showed the superiority of the intera
... Show Moreإن النجاح في أداء المتطلبات الفنية والخططية في أي من الألعاب ألرياضيه يستوجب امتلاك العناصر الاساسيه المتعلقة بطبيعة الاداء ونوع الفعالية الرياضية الممارسة , لذا فان اغلب الألعاب الرياضية تعتمد على مكونات ألقدره التوافقيه والادراكيه الحسيه بوصفها احد العناصر الاساسيه في المستويات العليا لما توفره من قاعدة اقتران للصفات البدنيه والحر كيه وقدرات أجهزة الجسم الوظيفية , وفقا للأسس المعتمدة في بناء مهاراته, وع
... Show MoreChurning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s
... Show MoreSelf-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin
... Show MoreThe paper aims to propose Teaching Learning based Optimization (TLBO) algorithm to solve 3-D packing problem in containers. The objective which can be presented in a mathematical model is optimizing the space usage in a container. Besides the interaction effect between students and teacher, this algorithm also observes the learning process between students in the classroom which does not need any control parameters. Thus, TLBO provides the teachers phase and students phase as its main updating process to find the best solution. More precisely, to validate the algorithm effectiveness, it was implemented in three sample cases. There was small data which had 5 size-types of items with 12 units, medium data which had 10 size-types of items w
... Show MoreCassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show MoreThis paper aims to examine the effects of the gender differences on learners‟ motivation in learning the four skills of English as a foreign language as well as to identify the proper types of motivation for males and females via a qualitative semi-structured interview. The findings showed that all the males have extrinsic motivation in all four skills. On the other hand, females differ among themselves in their motivation. In conclusion, it is also the teachers‟ responsibility to guide and direct their learners to achieve better outcomes in learning the four EFL skills.
One study whose importance has significantly grown in recent years is lip-reading, particularly with the widespread of using deep learning techniques. Lip reading is essential for speech recognition in noisy environments or for those with hearing impairments. It refers to recognizing spoken sentences using visual information acquired from lip movements. Also, the lip area, especially for males, suffers from several problems, such as the mouth area containing the mustache and beard, which may cover the lip area. This paper proposes an automatic lip-reading system to recognize and classify short English sentences spoken by speakers using deep learning networks. The input video extracts frames and each frame is passed to the Viola-Jone
... Show More