Topology and its applications occupy the interest of many researching centers in the advanced world. From this point of view and because the near open sets play a very important role in general topology and they are now the research topics of many topologists worldwide and its sets doesn’t enter in fibrewise topology yet. Therefore, we use some of the near open sets to be model for introduce results and new spaces in fibrewise topological spaces. Also, there is a very important role of closure operators in constructing a topological spaces, so we introduce a new closure operators on the power set of vertices on graphs and conclusion theorems and new spaces from it. Furthermore, we discuss the relationships of connectedness between some types of graphs and new spaces by using graph closure operators and we give some definitions of near open subgraphs using the new closure operators on graphs. The boundary regions in approximation spaces are considered as uncertainty regions. There are a lot of information which result from many experiments that may make the boundary regions to be all elements of the society under study or to be all elements of the society except a small number of elements, which leads to the failure of several results and decisions which could be reached in such cases. In the context of this thesis, we tried to introduce some solution to such dilemmas, through the division of the boundary regions into several levels. This leaves us to get to the mechanism for decreasing the boundary regions and making it small as possible. We also offer some theories of uncertainty through the topological spaces which result from new closure operator of graphs on the approximation spaces. Finally, we study some related applications.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise Lindelöf and locally Lindelöf topological spaces, which are generalizations of will-known concepts: Lindelöf topological space (1) "A topological space X is called a Lindelöf space if for every open cover of X has a countable subcover" and locally Lindelöf topological space (1) "A topological space X is called a locally Lindelöf space if for every point x in X, there exist a nbd U of x such that the closure of U in X is Lindelöf space". Either the new concepts are: "A fibrewise topological space X over B is called a fibrewise Lindelöf if the projection function p : X→B is Lindelöf" and "The fibrewise topological space X over B
... Show MoreThis paper is devoted to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuzzy -ω-topological spaces, weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω- topological spaces. Also, Several characterizations and properties of this class are also given as well. Finally, we focused on studying the relationship between weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω-topological spaces.
This paper studies the investment project evaluation under the condition of uncertainty. Evaluation of investment project under risk and uncertainty is possible to be carried out through application of various methods and techniques. The best known methods are : Risk-adjusted discount rate , certainty equivalent method , Sensitivity analysis and Simulation method The objective of this study is using the sensitivity analysis in evaluation Glass Bottles project in Anbar province under the condition of risk and uncertainty.
After applying sensitivity analysis we found that the glass bottles project sensitive to the following factors (cash flow, the cost of investment, and the pro
... Show MoreSummary:
The A. H. 7th century had witnessed an obvious development
in the Yemeni scientific process. The most important reason
being the establishment of the Resooliy State (A. H. 626-858)
which had achieved economic and scientific prosperity in
various fields of knowledge. Its sultans had participated in
building schools, purchasing books, summoning of scientists,
presenting gifts, and encouraging scientific journeys in and out
of Yemen. Therefore, studies had thrived and authorship
widened, and there appeared not a few number of scientists..
(Use of models of game theory in determining the policies to maximize profits for the Pepsi Cola and Coca-Cola in the province of Baghdad)
Due to the importance of the theory of games especially theories of oligopoly in the study of the reality of competition among companies or governments and others the researcher linked theories of oligopoly to Econometrics to include all the policies used by companies after these theories were based on price and quantity only the researcher applied these theories to data taken from Pepsi Cola and Coca-Cola In Baghdad Steps of the solution where stated for the models proposed and solutions where found to be balance points is for the two companies according to the princi
... Show MoreRecent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. T
... Show MoreThere have been many writings and discussions that dealt with the details and interpretation of the research methods and the identification of the methods and methodological methods used by researchers and writers as they deal with research topics and problems in all fields of natural and human sciences. But we noticed that the movement of science and its knowledge and development requires the identification of suitable tools and methodological methods appropriate for each type of science. In other words, attempts should be established to build appropriate methodological tools for human and cognitive activity that can be referred to as a specific science that sets out certain paths of the human sciences which is certainly the ori
... Show MoreIn this thesis, we introduced some kinds of fibrewise topological spaces by using totally continuous function is called fibrewise totally topological spaces. We generalize some fundamental results from fibrewise topology into fibrewise totally topological spaces. We also introduce the concepts of fibrewise totally separation axioms, fibrewise totally compact and locally totally compact topological spaces. As well as fibrewise totally perfect topological spaces. We explain and discuss new notion of fibrewise topological spaces, namely fibrewise totally topological spaces. We, also introduce the concepts of fibrewise totally closed topological spaces, fibrewise totally open topological spaces, fibrewise locally sliceable and locally s
... Show MoreThe aim of this paper is to introduce and study the notion type of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j = {δ, θ, α, p, s, b, β}.
Relation on a set is a simple mathematical model to which many real-life data can be connected. A binary relation on a set can always be represented by a digraph. Topology on a set can be generated by binary relations on the set . In this direction, the study will consider different classical categories of topological spaces whose topology is defined by the binary relations adjacency and reachability on the vertex set of a directed graph. This paper analyses some properties of these topologies and studies the properties of closure and interior of the vertex set of subgraphs of a digraph. Further, some applications of topology generated by digraphs in the study of biological systems are cited.