Applications of superconductor compounds were considered as modern and important topics, especially these which are exposures to one of the nuclear radiation kinds. So, we gone to investigate the influence of fast neutrons irradiation on electrical and structural characteristics of HgxSb1-xBa2Ca2Cu3O8+δ superconducting compound at (x = 0.7) in ratio. The superconducting specimens were synthesized using solid state technique. Specimens were exposure to the nuclear radiation using fast neutrons with doses (0, 9.06 x1010, 15.3 x 1010 and 18.17 x 1010) n/cm2 respectively. Electrical and X-ray diffraction properties of superconductor specimens before and after irradiation were investigated under standard conditions. Results of X-ray diffraction show that the structure of HgxSb1-x Ba2Ca2Cu3O8+δ has tetragonal structure according to the 1223 phase. Besides, increment of the ratio (c/a) as a result of the effect of fast neutron irradiation. The transition temperature Tc(on) as well as Tc(off)) were decreased from (117 to 85) K and from (133 to 101) K, respectively.
This contribution investigates structural, electronic, and optical properties of cubic barium titanate (BaTiO3) perovskites using first-principles calculations of density functional theory (DFT). Generalized gradient approximations (GGA) alongside with PW91 functional have been implemented for the exchange–correlation potential. The obtained results display that BaTiO3 exhibits a band gap of 3.21 eV which agrees well with the previously experimental and theoretical literature. Interestingly, our results explore that when replacing Pd atom with Ba and Ti atoms at 0.125 content a clear decrease in the electronic band gap of 1.052 and 1.090 eV located within the visible range of electromagnetic wavelengths (EMW). Optical parameters such as a
... Show MoreThis study involves the synthesis of a new class of silicon polymers, designated as P1-P7, derived from dichlorodimethylsilane (DCDMS) in combination with various organic compounds (Schiff bases prepared from different amines and appropriate aldehydes or ketones) [I-V] through condensation polymerization. The structures of all monomers and polymers were characterization by FTIR and 1HNMR spectroscopy (for some polymers). The results of thermogravimetric analysis (TGA) and differential scanning calorimetry DSC test show stable thermal behaviour. Polymers with a higher concentration of aromatic rings in their repeating structural units exhibited a higher temperature for weight loss, indicating increased thermal stability. Thermal meas
... Show MoreThe main goal of this work is to put a simple model of the spectral energy distribution of binary stars called WW Cha. This model is built up on the extracted data from various telescopes and archives for the target WW Cha stars and then analyzing them using a python environment. The result of the fitting proposes that there are two protoplanetary disks around the WW Cha star, with different physical properties for each disk, such as the size of the inner disk being 10 AU, while the size of the outer disk being 300 AU. The shape of the outer disk is a flaring disk not a flat disk according to the value of the power law for the surface density (1.5). The emission in the disk is caused by small amorphous olivine grains rangin
... Show MoreThis study involves the synthesis of a new class of silicon polymers, designated as P1-P7, derived from dichlorodimethylsilane (DCDMS) in combination with various organic compounds (Schiff bases prepared from different amines and appropriate aldehydes or ketones) [I-V] through condensation polymerization. The structures of all monomers and polymers were characterization by FTIR and 1HNMR spectroscopy (for some polymers). The results of thermogravimetric analysis (TGA) and differential scanning calorimetry DSC test show stable thermal behaviour. Polymers with a higher concentration of aromatic rings in their repeating structural units exhibited a higher temperature for weight loss, indicating increased thermal stability. Thermal meas
... Show MoreI n vitro rooting plantlets of three sugarcane genotypes(Co.j.64, Co.j.86 and Missan) were cultured in the field after exposed at different doses of gamma rays (1,2,3,4,) kr. Data of reduction percentage on vegetative growth, roots number, length per plant and their diameter were investigated. Results showed gradual reductions in number of shoots, length and diameter as according to increasing of gamma doses. The reduction percentage in shoot number, length were reached 57.86,70.36 % at 4 kr respectively which have mean number and length per plant reached (9.27 and 55.33 cm) as compared with the control treatment ,While 1 kr caused higher percent in diameter reached 9.69 % with mean of diameter per plant reached 2.57 cm. Mean time , Ge
... Show MoreA preventing shield for neutrons and gamma rays was designed using alternate layers of water and iron with pre-fixed dimensions in order to study the possibility of attenuating both neutrons and gamma-rays. ANISN CODE was prepared and adapted for the shield calculation using radiation doses calculation: Two groups of cross-section were used for each of neutrons and gamma-rays that rely on the one – dimensional transport equation using discrete ordinate's method, and through transforming cross-section values to values that are independent on the number of groups. The memory size required for the applied code was reduced and the results obtained were in agreement with those of standard acceptable document samples of cross –section, this a
... Show More