Tax state institution regards as one of the largest state institutions implementing the tax rules issuing be legislative body and achieving the goals of tax (financial, economic, social and political). So, the tax management should pay attention to the procedures enabling it to achieve those rules starting from the procedures of tax restrict and ending by tax allocation where the process of assessment the taxation must relaxing on modern methods. The problem of the study raising from that in spite of there is a low obliging the taxable person (registered or not) to submit a declaration about his income and the achieved profit to be the base of taxation˒ where the other ways are secondary ways helping in rejection of tax declaration, the scientific application becomes contravention of the law where the tax declaration and its procedures transform to a secondary method effecting the tax obligation negatively and leading to the expansion of tax evasion beside that the is weakness in the procedures of taxation and in following up by the units which in charge of their achievement all this lead us to the following question! Are the adopted procedures of taxation of true income and its resources achieved their role to restrict the tax erosion? So, this study aims at shading the light on the theoretical framework of the tax declaration adopting in the tax state institution and its place among the different assessment methods, discussing the procedures of taxation depending on the income tax low, their abilities in retracting the tax evasion and the level of implementing of them by the responsible units, observing the weakness points, clearing the indicators of assessment and putting the solutions to treat them. The result of this study show that there are some weakness points in the procedures of taxation adopting by the responsible units in implementing them in the brings of the institution and in the process of following up by the department of vocational and merchandise works. The study concludes some of suggestions basing on the scientific and theoretical conclusions among of them focusing on suitability of the tax procedure and don’t depending on the traditional desk inspection but trying to widen its field to include observation of the taxable person's records in their places of work .
يهدف البحث الى قياس مستوى ارتباط وتأثير القدرات المعرفية الدينامية في تنافسية الاعمال، وتكونت العينة من (155) فردا في اربعة مصانع للالبان في بغداد وهي (ابو غريب، والزراعة، والحلال، وعيون الرافدين) اذ تمثل مجتمع البحث من اصحاب المصانع، والمديرين والعاملين في السيطرة النوعية والبحث والتطوير والمهندسين والفنيين والعاملين ذوي الخبرة في صناعة الالبان. وجرى تحليل البيانات واختبار الفرضيات باستخدام الادوات الإحصا
... Show MoreMethods of speech recognition have been the subject of several studies over the past decade. Speech recognition has been one of the most exciting areas of the signal processing. Mixed transform is a useful tool for speech signal processing; it is developed for its abilities of improvement in feature extraction. Speech recognition includes three important stages, preprocessing, feature extraction, and classification. Recognition accuracy is so affected by the features extraction stage; therefore different models of mixed transform for feature extraction were proposed. The properties of the recorded isolated word will be 1-D, which achieve the conversion of each 1-D word into a 2-D form. The second step of the word recognizer requires, the
... Show MoreSubcutaneous vascularization has become a new solution for identification management over the past few years. Systems based on dorsal hand veins are particularly promising for high-security settings. The dorsal hand vein recognition system comprises the following steps: acquiring images from the database and preprocessing them, locating the region of interest, and extracting and recognizing information from the dorsal hand vein pattern. This paper reviewed several techniques for obtaining the dorsal hand vein area and identifying a person. Therefore, this study just provides a comprehensive review of existing previous theories. This model aims to offer the improvement in the accuracy rate of the system that was shown in previous studies and
... Show MoreDocument analysis of images snapped by camera is a growing challenge. These photos are often poor-quality compound images, composed of various objects and text; this makes automatic analysis complicated. OCR is one of the image processing techniques which is used to perform automatic identification of texts. Existing image processing techniques need to manage many parameters in order to clearly recognize the text in such pictures. Segmentation is regarded one of these essential parameters. This paper discusses the accuracy of segmentation process and its effect over the recognition process. According to the proposed method, the images were firstly filtered using the wiener filter then the active contour algorithm could b
... Show MoreImage recognition is one of the most important applications of information processing, in this paper; a comparison between 3-level techniques based image recognition has been achieved, using discrete wavelet (DWT) and stationary wavelet transforms (SWT), stationary-stationary-stationary (sss), stationary-stationary-wavelet (ssw), stationary-wavelet-stationary (sws), stationary-wavelet-wavelet (sww), wavelet-stationary- stationary (wss), wavelet-stationary-wavelet (wsw), wavelet-wavelet-stationary (wws) and wavelet-wavelet-wavelet (www). A comparison between these techniques has been implemented. according to the peak signal to noise ratio (PSNR), root mean square error (RMSE), compression ratio (CR) and the coding noise e (n) of each third
... Show MoreRecognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),
... Show MoreOver the past few years, ear biometrics has attracted a lot of attention. It is a trusted biometric for the identification and recognition of humans due to its consistent shape and rich texture variation. The ear presents an attractive solution since it is visible, ear images are easily captured, and the ear structure remains relatively stable over time. In this paper, a comprehensive review of prior research was conducted to establish the efficacy of utilizing ear features for individual identification through the employment of both manually-crafted features and deep-learning approaches. The objective of this model is to present the accuracy rate of person identification systems based on either manually-crafted features such as D
... Show MoreThe area of character recognition has received a considerable attention by researchers all over the world during the last three decades. However, this research explores best sets of feature extraction techniques and studies the accuracy of well-known classifiers for Arabic numeral using the Statistical styles in two methods and making comparison study between them. First method Linear Discriminant function that is yield results with accuracy as high as 90% of original grouped cases correctly classified. In the second method, we proposed algorithm, The results show the efficiency of the proposed algorithms, where it is found to achieve recognition accuracy of 92.9% and 91.4%. This is providing efficiency more than the first method.
Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show More