The research aims to know the extent of the impact of the risks of foreign exchange centers represented in commitment risks, liquidity risks, and exchange rate risks on the continuity of the economic unit. The research in the light of its presentation of the intellectual, cognitive and applied contributions about the risks of foreign currency centers and the continuity of the economic unit, and represented the research community in the banking sector, and the sample included nine private commercial banks listed in the Iraq Stock Exchange, and they relied on the research on a time series consisting of four years that extended from one year 2017 to 2020. The research problem was the impact of the risks associated with foreign currency centers on the continuity of the work of banks, and the research relied on financial indicators to measure the risks of foreign currency centers, and adopted the (Sherrod) model to measure the continuity of the economic unit, reinforced by the statistical methods and programs represented in the program (SPSS) to test the research hypotheses, the most important conclusions that he reached, and that non-compliance with the specified percentage according to the instructions is pure The overall currency position in relation to the capital and sound reserves may affect the continuity of the bank due to the imposition of fines on banks that exceed the ratio by the Central Bank of Iraq, and these fines are large whenever the percentage of excess is large compared to the specified ratio, and the most important recommendations reached by banks should manage Positions well and adhere to the specified percentage of the total net foreign exchange position in relation to the capital and sound reserves determined by Instruction No. (4) to facilitate the implementation of the Banking Law and the Central Bank of Iraq’s instructions because of their impact on the continuity of the bank.
Activated carbon derived from Ficus Binjamina agro-waste synthesized by pyro carbonic acid microwave method and treated with silicon oxide (SiO2) was used to enhance the adsorption capability of the malachite green (MG) dye. Three factors of concentration of dye, time of mixing, and the amount of activated carbon with four levels were used to investigate their effect on the MG removal efficiency. The results show that 0.4 g/L dosage, 80 mg/L dye concentration, and 40 min adsorption duration were found as an optimum conditions for 99.13% removal efficiency. The results also reveal that Freundlich isotherm and the pseudo-second-order kinetic models were the best models to describe the equilibrium adsorption data.
The present work reports the performance of three types of polyethersulfone (PES) membrane in the removal of highly polluting and toxic lead Pb2+ and cadmium Cd2+ ions from a single salt. This study investigated the effect of operating variables, including pH, types of PES membrane, and feed concentration, on the separation process. The transport parameters and mass transfer coefficient (k) of the membranes were estimated using the combined film theory-solution-diffusion (CFSD), combined film theory-Spiegler-Kedem (CFSK), and combined film theory-finely-porous (CFFP) membrane transport models. Various parameters were used to estimate the enrichment factors, concentration polarization modulus, and Péclet number. The pH values signif
... Show MoreThis study involved the treatment of textile wastewater contaminated with direct blue 15 dye (DB15) using a heterogeneous photo-Fenton-like process. Bimetallic iron/copper nanoparticles loaded on bentonite clay were used as heterogeneous catalysts and prepared via liquid-phase reduction method using eucalyptus leaves extract (E-Fe/Cu@BNPs). Characterization methods were applied to resultant particles (NPs), including SEM, BET, and FTIR techniques. The prepared NPs were found with porous and spherical shapes with a specific surface area of particles was 28.589 m2/g. The effect of main parameters on the photo-Fenton-like degradation of DB15 was investigated through batch and continuous fixed-bed systems. In batch mode, pH, H2O2 dosage, DB15 c
... Show MoreThis study proposed using color components as artificial intelligence (AI) input to predict milk moisture and fat contents. In this sense, an adaptive neuro‐fuzzy inference system (ANFIS) was applied to milk processed by moderate electrical field‐based non‐thermal (NP) and conventional pasteurization (CP). The differences between predicted and experimental data were not significant (
Objective: Per-implantitis is one of the implant treatment complications. Dentists have failed to restore damaged periodontium by using conventional therapies. Tissue engineering (stem cells, scaffold and growth factors) aims to reconstruct natural tissues. The paper aimed to isolate both periodontal ligament stem cells (PDLSCs) and bone marrow mesenchymal stem cells (BMMSCs) and use them in a co-culture method to create three-layered cell sheets for reconstructing natural periodontal ligament (PDL) tissue. Materials and methods: BMMSCs were isolated from rabbit tibia and femur, and PDLSC culture was established from the lower right incisor. The cells were co-cultured to induce BMMSC differentiation into PDL cells. Cell morphology, stem cel
... Show MoreThe corrosion inhibiting properties of the new furan derivative 5-(furan-2-ylmethylsulfonyl-4-phenyl-2,4- dihydro [1,2,4] triazole-3-thione in acidic solution (1.0 M HCl) were explored utilizing electrochemical, surface morphology (AFM), and quantum chemical calculations approaches. The novel furan derivative 5-(furan-2-ylmethylsulfonyl-4-phenyl-2,4- dihydro [1,2,4] triazole-3-thione shows with an inhibitory efficiency value of 99.4 percent at 150 ppm, carbon steel corrosion in acidic medium is effectively inhibited, according to the results. The influence of temperature on corrosion prevention was studied using adsorption parameters and activation thermodynamics. The novel furan derivative creates a protective layer over the metallic surfa
... Show MoreThis study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show More