Preferred Language
Articles
/
jperc-920
Voluntary Work for Women in the Light of Islamic Education: Voluntary Work for Women in the Light of Islamic Education
...Show More Authors

 

The research aims to identify the most important areas of voluntary work available to women in society, stand on the most important controls that push women to work in voluntary areas in society. The research also seeks to stand on the most prominent obstacles to the voluntary work of women in society. The research contained four main chapters: Chapter I: Definition of research, Chapter 2: Objectives, areas, controls and effects of volunteer work, Chapter 3: Voluntary Work of Women in the Celestial Religions, and lastly, Chapter 4: Theories, Constraints, and Recommendations for Voluntary Work for Women.The researcher suggested several recommendations: 1-establishing a unit responsible for planning, design, implementation and evaluation of voluntary programs and community service, as well as coordination between university faculties and communication with community institution. 2-sending letters to the owners of the qualifications and expertise and invited them to contribute to volunteering to serve the community. 3-Activating the role of women in the practice of various voluntary activities with the appropriate rehabilitation of this practice and focus on the interest in supporting domestic productive projects. 4-Organizing training courses for volunteers or volunteers in the existing bodies and in the community service in the universities before they are assigned to volunteer tasks.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Ieee Transactions On Industrial Electronics
Singular Perturbation-Based Adaptive Integral Sliding Mode Control for Flexible Joint Robots
...Show More Authors

The flexible joint robot (FJR) typically experiences parametric variations, nonlinearities, underactuation, noise propagation, and external disturbances which seriously degrade the FJR tracking. This article proposes an adaptive integral sliding mode controller (AISMC) based on a singular perturbation method and two state observers for the FJR to achieve high performance. First, the underactuated FJR is modeled into two simple second-order fast and slow subsystems by using Olfati transformation and singular perturbation method, which handles underactuation while reducing noise amplification. Then, the AISMC is proposed to effectively accomplish the desired tracking performance, in which the integral sliding surface is designed to reduce cha

... Show More
View Publication
Scopus (76)
Crossref (72)
Scopus Clarivate Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Journal Européen Des Systèmes Automatisés​
An IoT and Machine Learning-Based Predictive Maintenance System for Electrical Motors
...Show More Authors

The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com

... Show More
View Publication
Scopus (39)
Crossref (29)
Scopus Crossref
Publication Date
Sun Apr 01 2018
Journal Name
Journal Of Construction Engineering And Management
Developing a Decision-Making Framework to Select Safety Technologies for Highway Construction
...Show More Authors

View Publication
Scopus (61)
Crossref (59)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Water, Air And Soil Pollution
Cladophora Algae Modified with CuO Nanoparticles for Tetracycline Removal from Aqueous Solutions
...Show More Authors

Modified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time

... Show More
Scopus (34)
Crossref (33)
Scopus Clarivate Crossref
Publication Date
Sun Jun 21 2020
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Co-Amorphous System: A promising Strategy for Delivering Poorly Water - Soluble Drugs
...Show More Authors

Amorphization of drug has been considered as an attractive approach in improving drug solubility and bioavailability. Unlike their crystalline counterparts, amorphous materials lack the long-range order of molecular packing and present the highest energy state of a solid material. Co-amorphous systems (CAM) are an innovative formulation technique by where the amorphous drugs are stabilized via powerful intermolecular interactions by means of a low molecular co-former.

This review highlights the different approaches in the preparation of co-amorphous drug delivery system, the proper selection of the co-formers. In addition, the recent advances in characterization, Industrial scale and formulation will be discussed.

View Publication Preview PDF
Scopus (7)
Crossref (7)
Scopus Crossref
Publication Date
Thu Apr 20 2023
Journal Name
Fire
An Efficient Wildfire Detection System for AI-Embedded Applications Using Satellite Imagery
...Show More Authors

Wildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob

... Show More
View Publication
Scopus (27)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Sun Jul 01 2018
Journal Name
Ieee Transactions On Intelligent Transportation Systems
Real-Time Intersection-Based Segment Aware Routing Algorithm for Urban Vehicular Networks
...Show More Authors

High vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination

... Show More
View Publication
Scopus (70)
Crossref (62)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Artificial Neural Network and Latent Semantic Analysis for Adverse Drug Reaction Detection
...Show More Authors

Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (12)
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Diagnose COVID-19 by using hybrid CNN-RNN for Chest X-ray
...Show More Authors

<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121

... Show More
View Publication
Scopus (19)
Crossref (3)
Scopus Crossref
Publication Date
Mon Nov 21 2022
Journal Name
Sensors
Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets
...Show More Authors

Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes

... Show More
View Publication
Scopus (35)
Crossref (28)
Scopus Clarivate Crossref