Preferred Language
Articles
/
jperc-908
Developing Undergraduate Students' Geography Learning Skills during Fieldwork and Their Attitude toward It: Developing Undergraduate Students' Geography Learning Skills during Fieldwork and Their Attitude toward It
...Show More Authors

Abstract

This study identified the developing of a range of students' geography learning skills and the change in their attitudes toward fieldwork as a consequence of leaning experiences that occurred within a field trip. The sample of the study consisted of (27) students within a special topic course enrolled in Geography Department at Umm Al-Qura University in Saudi Arabia in semester 2, 2018. A range of students' geography learning skills were measured by the skills questionnaire that consisted of 12 geography skills after completing field work. Changes in students' attitudes towards fieldwork was measured through a modified version of Boyle et al.'s (2007) attitudes instrument at the beginning and at the end of the field trip. Interviews were used to enhance the studies' instruments as a data gathering technique. The findings of the study showed that students developed the all geography learning skills, where more than 95% of students felt that they developed their basic problem solving, sampling, measuring & recording, survey methods, information gathering, data analysis, safety and communication & transferable skills. While 92% of students developed observation and integration skill, 90% developed identification skills, 89% developed experimental design skill, and finally, 76% developed interpretation skill. The students increased their enjoyment (t=12.77, p<0.001) as a consequence of doing fieldwork. A similar result was produced for collaboration (t=14.44, p<0.001) over the field trip. The students' responses of interviews questions supported quantitative results.

Keywords: developing, undergraduate students, fieldwork, geography-learning skills, attitudes.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Sep 27 2020
Journal Name
Iraqi National Journal Of Nursing Specialties
Effectiveness of Health Educational Program on Nurses' Knowledge toward Children Pneumonia in Al-Amara City Hospitals
...Show More Authors

Objective(s): The present study aims to evaluate the effectiveness of Health educational program on nurses' knowledge toward children pneumonia at Al-Amara City hospitals..

 Methodology: A quasi –experimental study design two-study group (pretest-posttest 1 and posttest 2) carried out at Alzahrawy Hospital and Child and maternity hospital in Al Amara City to identify the effectiveness of the Health educational program on Nurses Knowledge toward Children pneumonia; the study was conducted between 1 of September 2019 to 1 of April 2020. A Purposive (Non-probability) sample is chosen for the present study. The size of sample is (60) nurses divided into two gr

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
Annual Behavior of Electron Density and Critical Frequency Parameters During Maximum and Minimum Years of Solar Cycles 22, 23 and 24
...Show More Authors
Abstract<p>In this work, the annual behavior of critical frequency and electron density parameters of the ionosphere have been studied for the years (1989, 2001 and 2014) and (1986, 1996 and 2008) which represent the maximum and minimum of years in the solar cycles (22, 23 and 24) respectively. The annual behavior of (Ne, f<sub>o</sub> ) parameters have been investigated for different heights of Ionosphere layer (100 -1000) Km. The dataset was created both of critical frequency and electron density parameters by using the international reference ionosphere model (IRI-2016 model). This study showed result that during the maximum solar cycles the values of the (Ne) parameter change with </p> ... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Al-nahrain University Science
Breaking Knapsack Cipher Using Population Based Incremental Learning
...Show More Authors

View Publication
Crossref
Publication Date
Sat Dec 31 2022
Journal Name
International Journal On “technical And Physical Problems Of Engineering”
Age Estimation Utilizing Deep Learning Convolutional Neural Network
...Show More Authors

Estimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes

... Show More
Scopus (11)
Scopus
Publication Date
Mon Sep 30 2024
Journal Name
Al-mustansiriyah Journal Of Science
A Transfer Learning Approach for Arabic Image Captions
...Show More Authors

Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Face-based Gender Classification Using Deep Learning Model
...Show More Authors

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes On Data Engineering And Communications Technologies
Utilizing Deep Learning Technique for Arabic Image Captioning
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Dec 21 2021
Journal Name
Mendel
Hybrid Deep Learning Model for Singing Voice Separation
...Show More Authors

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi

... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Sun Jan 31 2016
Journal Name
International Journal Of Research In Humanities, Arts, And Literature
THE PROBLEMS FACING IRAQI CHILDREN IN LEARNING ENGLISH
...Show More Authors

DBN Rashid, IMPAT: International Journal of Research in Humanities, Arts, and Literature, 2016 - Cited by 5

View Publication
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Arabic Sentiment Analysis (ASA) Using Deep Learning Approach
...Show More Authors

Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l

... Show More
View Publication Preview PDF
Crossref (23)
Crossref