A field study aimed at identifying the sources of mutual complaints among the Directorates of Education staff of their departments and management and run it in their daily dealings with principals in the province of Baghdad, and adopt approach. It was determined the research consists of (2357) male and female employees and 305 randomly stratified simple by the rate of (7%) from the research community as the number of sample reached (167) male and female employees, and selected sample was randomly stratified simple by the rate of (39.67%) of the research community, as the number of sample was (121) principals. It was constructed two questionnaires, the first included (28) items and the second contained (28) items. And the two researchers made sure of their validity and reliability. Results were analyzed by statistical software (SPSS), the two questioners were applied in the second semester of the academic year 2015-2016. The study has found the following results: the sources of complaint suffered by school principals are sharper and larger than those of complaints suffered by the Directorates of Education staff, and the depth and size of the reasons which were characterized by the principles are bigger little about from those identified by the Directorates of Education staff, and the research has made a number of recommendations and suggestions.
In real situations all observations and measurements are not exact numbers but more or less non-exact, also called fuzzy. So, in this paper, we use approximate non-Bayesian computational methods to estimate inverse Weibull parameters and reliability function with fuzzy data. The maximum likelihood and moment estimations are obtained as non-Bayesian estimation. The maximum likelihood estimators have been derived numerically based on two iterative techniques namely “Newton-Raphson†and the “Expectation-Maximization†techniques. In addition, we provide compared numerically through Monte-Carlo simulation study to obtained estimates of the parameters and reliability function i
... Show MoreThis work includes the synthesis of new ester compounds containing two 1,3,4-oxadiazole rings, 15a-c and 16a-c. This was done over seven steps, starting with p-acetamido-phenol 1 and 2-mercaptobenzoimidazole 2. The structure of the products was determined using FT-IR, 1H NMR, and mass spectroscopy. The evaluation of the antimicrobial activities of some prepared compounds was achieved against four types of bacteria (two types of gram-positive bacteria; Staphylococcus aureus and Bacillus subtilis, and two types of gram-negative bacteria, Pseudomonas aeruginosa and E. Coli), as well as against one types of fungus (C. albino). The results show moderate activit against the study bacteria, and the theoretical analysis of the toxi
... Show MoreCover crops (CC) improve soil quality, including soil microbial enzymatic activities and soil chemical parameters. Scientific studies conducted in research centers have shown positive effects of CC on soil enzymatic activities; however, studies conducted in farmer fields are lacking in the literature. The objective of this study was to quantify CC effects on soil microbial enzymatic activities (β-glucosidase, β-glucosaminidase, fluorescein diacetate hydrolase, and dehydrogenase) under a corn (Zea mays L.)–soybean (Glycine max (L.) Merr.) rotation. The study was conducted in 2016 and 2018 in Chariton County, Missouri, where CC were first established in 2012. All tested soil enzyme levels were significantly different between 2016 and 2018
... Show More<p>Vehicular ad-hoc networks (VANET) suffer from dynamic network environment and topological instability that caused by high mobility feature and varying vehicles density. Emerging 5G mobile technologies offer new opportunities to design improved VANET architecture for future intelligent transportation system. However, current software defined networking (SDN) based handover schemes face poor handover performance in VANET environment with notable issues in connection establishment and ongoing communication sessions. These poor connectivity and inflexibility challenges appear at high vehicles speed and high data rate services. Therefore, this paper proposes a flexible handover solution for VANET networks by integrating SDN and
... Show MoreSoil water use and water storage vary by vegetative management practices, and these practices affect land productivity and hydrologic processes. This study investigated the effects of agroforestry buffers (AB), grass buffers (GB), and biofuel crops (BC), relative to row crops (RC) on soil water use for a claypan soil in northern Missouri, USA. The experiment located at the Greenley Memorial Research Center included RC, AB, GB, and BC established in 1991, 1997, 1997, and 2012, respectively. Soil water reflectometer sensors installed at 5‐, 10‐, 20‐, and 40‐cm depths monitored soil water from April to November in 2017 and 2018. Results showed significant differences in weekly volumetric water content (VWC) among treatments for all fou
... Show MoreThe evolution of the Internet of things (IoT) led to connect billions of heterogeneous physical devices together to improve the quality of human life by collecting data from their environment. However, there is a need to store huge data in big storage and high computational capabilities. Cloud computing can be used to store big data. The data of IoT devices is transferred using two types of protocols: Message Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP). This paper aims to make a high performance and more reliable system through efficient use of resources. Thus, load balancing in cloud computing is used to dynamically distribute the workload across nodes to avoid overloading any individual r
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for