The current research aims to identify the effect of the program to develop the skill of friendship among kindergarten children, as well as the scope of the impact of the program on the sample. To achieve the objectives of the research, the researcher hypothesizes there is no significant difference between the average scores of the sample members on the friendship skill scale for the dimensional scale according to the experimental and control group. The research sample consisted of (60) girl and boy with age ranges (4-6) who were randomly selected from the Kindergarten Unity at Baghdad city/ Rusafa 1. The children were distributed into an experimental and control group, each group consists of (30) girl and boy. The two groups were chosen randomly. To achieve the objectives of the research, the researcher developed a scale of friendship skills for kindergarten children and a training program. The researcher used the experimental design with partial control for the experimental and control groups of the pre-posttest. The results showed that there is a statistically significant difference between the average scores of the children of the experimental group and the control group on the scale of friendship skill in the post-test. The independent variable of the training program has an effect on the variable of the skill of friendship. The research came out with a set of recommendations and suggestions.
Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show MorePatients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated
... Show MoreBotnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci
... Show MoreAl Huweizah Marsh is considered as the largest marsh at the southern part of Iraq. About one third of the marsh is located within the Iranian territory. Iran began to construct earth dikes along the Iraqi-Iranian international borders to separate the Iranian part of the marsh. The electrical conductivity, EC, value was adopted to be the indicator for the water salinity within the marsh. A steady two-dimensional water quality routing model was implemented by using the RMA2 and RMA4 softwares within the SMS computer package to estimate the distribution of the
EC values within the marsh seasonally during the wet, moderate and dry water years. The EC distribution Patterns were estimated considering the expected two cases of the marsh futu
A water resources management for earthen canal/stream is introduced through creating a combination procedure between a field study and the scientific analytical concepts that distinguish the hydraulic problems on this type of stream with using the facilities that are available in HECRAS software; aiming to point the solutions of these problems. Al Mahawil stream is an earthen canal which is subjected to periodic changes in cross sections due to scour, deposition, and incorrect periodic dredging processes due to growth of the Ceratophyllum plants and weeds on the bed and banks of the stream; which affect the characteristics of the flow. This research aims to present a strategy of water resources management through a field study that conducte
... Show MoreAl-Chibayish Marsh (CM) is considered as the major part of Central Marshes area of this marsh is 1050 Km². The water quality of these marshes is suffering from salt accumulation due to intensive dam construction, limited supply of water from sources, climate change impacts, and the absence of outlet flow from these marshes, specifically at low flow periods. So, the current research aims to assess and improve these marshes' hydraulic behavior and water quality and define the best location for outlet drains. Field measurements and laboratory tests were conducted for two periods (November 2020 and February 2021) to define the (TDS) concentrations at nine different locations. Samples were also examined for water's phy
... Show MoreAn evaluation the performance of the irrigation system for the Al-Ishaqi irrigation project for the Eastern Canal was conducted to identify management strategies that can be used to improve the operation and performance of the irrigation system. The study area is located in Salah al-Din G.0overnorate, Iraq. The field work included determining the moisture content of the soil before and after irrigation, measuring the inflow of the field to find the depth of the applied water, field monitoring, and measuring the depth of the root zone for each irrigation process. Field measurements showed that the average efficiency of water application for the two fields (A, and B) are 59.81% and 38.6%, respectively. The results of the efficiency of
... Show MoreThis research aims to numerous risks to the portfolio of the insurance company that arise from practicing the activity in general, and the risks arising from insurance contracts in particular, and what is the role of the company in the disclosure to help users (such as owners) to understand and concentration of risks in the financial reporting and identifying movable risks size to reinsurers that may affect the solvency of the portfolio and makes them at a given moment required to fulfill the obligations towards policyholders outweigh the financial capacity, which leads to stumble or bankruptcy.
So I sought this research is to identify the extent of the obligation to disclose the accounting for this risk and the extent of their i
... Show More