The current research aims to identify the effect of the program to develop the skill of friendship among kindergarten children, as well as the scope of the impact of the program on the sample. To achieve the objectives of the research, the researcher hypothesizes there is no significant difference between the average scores of the sample members on the friendship skill scale for the dimensional scale according to the experimental and control group. The research sample consisted of (60) girl and boy with age ranges (4-6) who were randomly selected from the Kindergarten Unity at Baghdad city/ Rusafa 1. The children were distributed into an experimental and control group, each group consists of (30) girl and boy. The two groups were chosen randomly. To achieve the objectives of the research, the researcher developed a scale of friendship skills for kindergarten children and a training program. The researcher used the experimental design with partial control for the experimental and control groups of the pre-posttest. The results showed that there is a statistically significant difference between the average scores of the children of the experimental group and the control group on the scale of friendship skill in the post-test. The independent variable of the training program has an effect on the variable of the skill of friendship. The research came out with a set of recommendations and suggestions.
Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show More