The aim of the research is to identify learning difficulties and their role in children's perception of self-concept. The researcher adopted the descriptive and analytical approach method in this study. A questionnaire was designed by the researcher to collect some related information such as biodata, family, health, diagnostic and behavioral patterns of the case. In addition, the researcher adopted the scale of learning difficulties for elementary school students prepared by Zaidan Ahmed Al-Sartawi (1995), the scale of student appreciation for the survey of learning difficulties for primary school students by Michael Best, which was translated to the Arabic language by (Saeed Abdullah Debis). The researcher adopted also the Self-Concept Scale prepared by (Ahmed Abdul Rahman and Mr. Abu Hashim (2002). The study was conducted in the Emirate of Ajman for the academic year (2017-2016). The results of the study according to the questionnaire showed that the sample suffers from difficulties in the subjects (reading, expression, calligraphy, mathematics, and geography). However, the number and type of errors are normal compared to their colleagues and on the scale of learning difficulties. The results showed that the first dimension is (academic difficulties) and in the second dimension is (behavioral characteristics) they occurred within the area of (potential learning difficulties). On the scale of the pupil’s appreciation for surveying learning difficulties, the case resulted in the presence of learning difficulties in the aspects (verbal comprehension, spoken language, and orientation). It can conclude that there are learning difficulties in the academic aspect related to (comprehension, spoken language, and knowledge). The absence of learning difficulties in terms of cognitive-motor related to (personal, social behavior, and movement coordination). As for the degree obtained by the case on the Self-Concept Scale, it was within the medium range, meaning that the case suffers from an average concept. As the student's self-understanding helps to perceive, know the strengths, and weaknesses of his personality, which supports the student's chances of success in academic achievement, academic achievement, and professional. The study recommended the activation of treatment programs designed for learning difficulties among elementary school students, by following training related to the curriculum, due to its association with active life success at the cognitive, psychological, and social levels.
تبنت العديد من المؤسسات الأكاديمية التعلم الإلكتروني منذ سنوات ، وقد أثبت فاعليته في كثير من هذه المؤسسات لاسيما تلك المهتمة بتعلم اللغات الاجنبية. الا انه مع انتشار جائحة كورونا اصبح التعليم الالكتروني ضرورة ملحة في الجامعات في جميع أنحاء العالم ، بما في ذلك الجامعات العراقية. تهدف الدراسة الحالية إلى تقصي أثر هذا الوباء على التعلم الإلكتروني في أحدى الكليات العراقية . يفترض الباحث أن تقبل ال
... Show MoreEmotion could be expressed through unimodal social behaviour’s or bimodal or it could be expressed through multimodal. This survey describes the background of facial emotion recognition and surveys the emotion recognition using visual modality. Some publicly available datasets are covered for performance evaluation. A summary of some of the research efforts to classify emotion using visual modality for the last five years from 2013 to 2018 is given in a tabular form.
Deep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing
... Show MoreAfter the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreZiegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventio
... Show MoreIn this study, we attempt to provide healthcare service to the pilgrims. This study describes how a multimedia courseware can be used in making the pilgrims aware of the common diseases that are present in Saudi Arabia during the pilgrimage. The multimedia courseware will also be used in providing some information about the symptoms of these diseases, and how each of them can be treated. The multimedia courseware contains a virtual representation of a hospital, some videos of actual cases of patients, and authentic learning activities intended to enhance health competencies during the pilgrimage. An examination of the courseware was conducted so as to study the manner in which the elements of the courseware are applied in real-time learn
... Show MoreIn this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show MoreIn this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
Recommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o
... Show More