The study aimed to evaluate educational programs efficiency in applying the best educational practices to educate students from the dangers of indecent behaviors, in line with higher education policy and the appropriateness of educational program dimensions to spread awareness among students to not fall into the indecent behaviors clutches. The study adopted the inductive exploratory approach through structural equation modeling and the descriptive analysis of the collected data from randomly selected sample (n=385) from educational academics at Northern Border University in the Saudi Arabia using a specially designed survey tool to meet study purposes to evaluate dimensions of teaching methods, evaluation tools, training courses, course descriptions, and technology use. Findings showed that overall means were medium, and regression coefficients of the five dimensions of current educational program were acceptable and less than (0.5), which confirms the efficiency of the educational program in combating indecent behaviors, with exception of significance impact of both course description and technology use from females' perspectives. The course description had the lowest percentage of saturation in terms of confirming factor analysis with a value of (0.26) and its negative correlation with the use of technology. In addition the study set many recommendations.
Necessary and sufficient conditions for the operator equation I AXAX n*, to have a real positive definite solution X are given. Based on these conditions, some properties of the operator A as well as relation between the solutions X andAare given.
In this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional dispersion equation. The algorithm for the numerical solution of this equation is based on explicit finite difference approximation. Consistency, conditional stability, and convergence of this numerical method are described. Finally, numerical example is presented to show the dispersion behavior according to the order of the fractional derivative and we demonstrate that our explicit finite difference approximation is a computationally efficient method for solving two-dimensional fractional dispersion equation
An Alternating Directions Implicit method is presented to solve the homogeneous heat diffusion equation when the governing equation is a bi-harmonic equation (X) based on Alternative Direction Implicit (ADI). Numerical results are compared with other results obtained by other numerical (explicit and implicit) methods. We apply these methods it two examples (X): the first one, we apply explicit when the temperature .
A new procedure of depth estimation to the apex of dyke-like sources from
magnetic data has been achieved through the application of a derived equation. The
procedure consists of applying a simple filtering technique to the total magnetic
intensity data profiles resulting from dyke-like bodies, having various depths, widths
and inclination angles. A background trending line is drawn for the filtered profile
and the output profile is considered for further calculations.
Two straight lines are drawn along the maximum slopes of the filtered profile
flanks. Then, the horizontal distances between the two lines at various amplitude
levels are measured and plotted against the amplitudes and the resulted relation is a
In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations nonhomogeneous of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.
In this article, we introduce a two-component generalization for a new generalization type of the short pulse equation was recently found by Hone and his collaborators. The coupled of nonlinear equations is analyzed from the viewpoint of Lie’s method of a continuous group of point transformations. Our results show the symmetries that the system of nonlinear equations can admit, as well as the admitting of the three-dimensional Lie algebra. Moreover, the Lie brackets for the independent vectors field are presented. Similarity reduction for the system is also discussed.
In this paper, some conditions to guarantee the existence of bounded solution to the second order multi delayed arguments differential equation are given. The Krasnoselskii theorem used to the Lebesgue’s dominated convergence and fixed point to obtain some new sufficient conditions for existence of solutions. Some important lemmas are established that are useful to prove the main results for oscillatory property. We also submitted some sufficient conditions to ensure the oscillation criteria of bounded solutions to the same equation.
This paper presents a new transform method to solve partial differential equations, for finding suitable accurate solutions in a wider domain. It can be used to solve the problems without resorting to the frequency domain. The new transform is combined with the homotopy perturbation method in order to solve three dimensional second order partial differential equations with initial condition, and the convergence of the solution to the exact form is proved. The implementation of the suggested method demonstrates the usefulness in finding exact solutions. The practical implications show the effectiveness of approach and it is easily implemented in finding exact solutions.
Finally, all algori
... Show MoreSecurity reflects a permanent and complex movement that complies with international and societal needs and developments in all its dimensions, interactions and levels. To constitute a universal demand for all States, communities and individuals. The question of security is one of the most important motivations and motivations that govern the behavior, and even the objectives of those societies and States. These groups or individuals have always sought to avoid fear and harm, and to provide stability, safety and security. In the light of this, security studies have been among the important fields of study in the field of international and strategic relations. The field witnessed many theoretical efforts, from the traditional perspective,
... Show More