Preferred Language
Articles
/
jperc-1162
The Degree to Which Princess Rahma University College Students Possess E-Learning Skills Related to Moodle from their Point of View, in Light of the Corona Crisis
...Show More Authors

This study aims to identify the degree of students of Princess Rahma University College owning e-learning skills related to MOODLE as they perceived in the of light Corona crisis. The researchers' questionnaire consisted of (37) items, distributed in three areas of e-learning skills related to the MOODLE on (147) students were chosen randomly. The results of the study showed that the degree of students 'possession of e-learning skills related to the MOODLE was significant. The results also revealed that there were statistically significant differences in the degree of students' possession of electronic learning skills related to the MOODLE due to sex in favor of females. Finally, there were no statistically significant differences in the degree of students 'possession of e-learning skills related to the MOODLE due to the variable of specialization and academic level.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Apr 18 2019
Journal Name
Al-kindy College Medical Journal
Demonstration of the value of diffusion weighted MR imaging for differentiation of benign from malignant breast lesions
...Show More Authors

Background: Radiologic evaluation of breast lesions is being achieved through several imaging modalities. Mammography has an established role in breast cancer screening and diagnosis. Still however, it shows some limitations particulary in dense breast.

Methods : Magnetic resonance imaging is an attractive tool for the diagnosis of breast tumors1 and the use of magnetic resonance imaging of the breast is rapidly increasing as this technique becomes more widely available.1 As an adjunct to mammography and ultrasound, MRI can be a valuable addition to the work-up of a breast abnormality. MRI has the advantages of providing a three-dimensional view of the breast, performing wit

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Nov 01 2019
Journal Name
Global Journal Of Public Health Medicine
PURIFICATION OF INULINASE FROM KLEBSIELLA PNEUMONIAE AND STUDY THE ANTIBACTERIAL EFFECT OF COMBINATION OF INULINASE AND CEFTAZIDIME
...Show More Authors

Klebsiella pneumoniae are Gram-negative which cause many diseases such as urinary tract infections, respiratory tract infections and septicemia. Inulinase is an enzyme used in food manufacture and pharmaceuticals. Inulinase is used in decreasing lipid ratio and, cholesterol in blood and considered as a prebiotic factor inside intestine. Many microorganisms can produce inulinase, such as yeast, fungi and bacteria; among such bacteria: Bacillus spp., Arthrobacter spp., and Pseudomonas spp. but there are no studies about inulinase production by K. pneumoniae have been reported. So the current study aims at investing the ability of producing and purification inulinase by K. pneumoniae. Method: K. pneumoniae were isolated from many hospitals and

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Mon Sep 30 2024
Journal Name
Al-mustansiriyah Journal Of Science
A Transfer Learning Approach for Arabic Image Captions
...Show More Authors

Publication Date
Tue Dec 21 2021
Journal Name
Mendel
Hybrid Deep Learning Model for Singing Voice Separation
...Show More Authors

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi

... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Al-nahrain University Science
Breaking Knapsack Cipher Using Population Based Incremental Learning
...Show More Authors

View Publication
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes On Data Engineering And Communications Technologies
Utilizing Deep Learning Technique for Arabic Image Captioning
...Show More Authors

View Publication
Crossref (2)
Scopus Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Approach for Facial Image Detection System
...Show More Authors

HM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023

View Publication
Scopus (7)
Scopus
Publication Date
Fri Mar 18 2022
Journal Name
Aro-the Scientific Journal Of Koya University
Detecting Deepfakes with Deep Learning and Gabor Filters
...Show More Authors

The proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue

... Show More
View Publication
Scopus (12)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
Iraqi Sentiment and Emotion Analysis Using Deep Learning
...Show More Authors

Analyzing sentiment and emotions in Arabic texts on social networking sites has gained wide interest from researchers. It has been an active research topic in recent years due to its importance in analyzing reviewers' opinions. The Iraqi dialect is one of the Arabic dialects used in social networking sites, characterized by its complexity and, therefore, the difficulty of analyzing sentiment. This work presents a hybrid deep learning model consisting of a Convolution Neural Network (CNN) and the Gated Recurrent Units (GRU) to analyze sentiment and emotions in Iraqi texts. Three Iraqi datasets (Iraqi Arab Emotions Data Set (IAEDS), Annotated Corpus of Mesopotamian-Iraqi Dialect (ACMID), and Iraqi Arabic Dataset (IAD)) col

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Mon Dec 01 2025
Journal Name
Journal Of Physics: Conference Series
Advanced Machine Learning Models for Banana Sweetness Classification
...Show More Authors

It takes a lot of time to classify the banana slices by sweetness level using traditional methods. By assessing the quality of fruits more focus is placed on its sweetness as well as the color since they affect the taste. The reason for sorting banana slices by their sweetness is to estimate the ripeness of bananas using the sweetness and color values of the slices. This classifying system assists in establishing the degree of ripeness of bananas needed for processing and consumption. The purpose of this article is to compare the efficiency of the SVM-linear, SVM-polynomial, and LDA classification of the sweetness of banana slices by their LRV level. The result of the experiment showed that the highest accuracy of 96.66% was achieved by the

... Show More
View Publication
Scopus Crossref