The research aims to identify the relationship between employing future skills during teaching from the viewpoint of students of Islamic studies at the Northern Border University, as well as their attitudes towards future professions. The researcher employed the correlational descriptive approach. The tools were a questionnaire for employing future skills, and a scale for the attitude towards the future profession. The two research tools were applied to a random sample of (242) male and female students from the department of Islamic Studies, College of Education and Arts. The findings showed that the total level of employing future skills and their three axes during teaching was average. It was also found that the attitude towards future professions among students was average, with a positive and statistically significant correlation between them. The findings did not reveal statistically significant differences between the averages of responses on the questionnaire and the scale due to the difference in gender or academic year. Finally, the study recommended training faculty members to employ future skills during teaching, and to improve students' future professional orientations.
Classification of network traffic is an important topic for network management, traffic routing, safe traffic discrimination, and better service delivery. Traffic examination is the entire process of examining traffic data, from intercepting traffic data to discovering patterns, relationships, misconfigurations, and anomalies in a network. Between them, traffic classification is a sub-domain of this field, the purpose of which is to classify network traffic into predefined classes such as usual or abnormal traffic and application type. Most Internet applications encrypt data during traffic, and classifying encrypted data during traffic is not possible with traditional methods. Statistical and intelligence methods can find and model traff
... Show MoreTwo well-known fluorescent molecules: fluorescein sodium salt (FSS) and 2,7-dichloro fluorescein (DCF) were tried to prove the efficiency, trustability and repeatability of ISNAG fluorimeter by using discrete and continuous flow injection analysis modes.A linear range of 0.002-1 mmol/L for FSS and 0.003-0.7 mmol/L was for DCF, with LOD 0.0018 mmol/L and 0.002 mmol/L for FSS and DCF respectively, were obtained for discrete mode of analysis. While the continuous mode gave a linear range of 0.002-0.7 mmol/L and 0.003-0.5 mmol/L for FSS and DCF respectively, the LOD were 0.0016mmol/L and 0.0018 mmol/L for FSS and DCF respectively. The results were compared with classical method at variable λex for both fluorescent molecules at 95
... Show MoreThe effect of thickness variation on some physical properties of hematite α-Fe2O3 thin films was investigated. An Fe2O3 bulk in the form of pellet was prepared by cold pressing of Fe2O3 powder with subsequent sintering at 800 . Thin films with various thicknesses were obtained on glass substrates by pulsed laser deposition technique. The films properties were characterized by XRD, and FT-IR. The deposited iron oxide thin films showed a single hematite phase with polycrystalline rhombohedral crystal structure .The thickness of films were estimated by using spectrometer to be (185-232) nm. Using Debye Scherrerś formula, the average grain size for the samples was found to be (18-32) nm. Atomic force microscopy indicated that the films had
... Show MoreA description of the implementation of integrated practical work in a remote laboratory was presented in this paper. The student, in real time, can access an online web page in order to manipulate a practical work of digital electronics. This work is based on the use of an embedded system PcDuino. The hardware architecture and software solutions are described, as well as the supervision tool that allows the student to follow changes in the output states of the Practical Work remotely.
Intelligent systems can be used to build systems that simulate human behavior. One such system is lip reading. Hence, lip reading is considered one of the hardest problems in image analysis, and thus machine learning is used to solve this problem, which achieves remarkable results, especially when using a deep neural network, in which it dives deeply into the texture of any input. Microlearning is the new trend in E-learning. It is based on small pieces of information to make the learning process easier and more productive. In this paper, a proposed system for multi-layer lip reading is presented. The proposed system is based on micro content (letters) to achieve the lip reading process using deep learning and auto-correction mo
... Show MoreIn this study, we attempt to provide healthcare service to the pilgrims. This study describes how a multimedia courseware can be used in making the pilgrims aware of the common diseases that are present in Saudi Arabia during the pilgrimage. The multimedia courseware will also be used in providing some information about the symptoms of these diseases, and how each of them can be treated. The multimedia courseware contains a virtual representation of a hospital, some videos of actual cases of patients, and authentic learning activities intended to enhance health competencies during the pilgrimage. An examination of the courseware was conducted so as to study the manner in which the elements of the courseware are applied in real-time learn
... Show MoreFace detection is one of the important applications of biometric technology and image processing. Convolutional neural networks (CNN) have been successfully used with great results in the areas of image processing as well as pattern recognition. In the recent years, deep learning techniques specifically CNN techniques have achieved marvellous accuracy rates on face detection field. Therefore, this study provides a comprehensive analysis of face detection research and applications that use various CNN methods and algorithms. This paper presents ten of the most recent studies and illustrate the achieved performance of each method.
In this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show More