The current research aimed to identify the level of moral identity and social affiliation among students exposed to shock pressures, as well as to reveal the relationship between these variables. To achieve these objectives, the researcher adopted the diagnostic tool for the measure of post-traumatic stress disorder (PDS-5) scale (Foa, 2013) translated to Arabic language by (Imran, 2017). The researcher also adopted the moral identity scale built by (Al-Bayati, 2015) and the measure of social affiliation built by (Al-Jashami, 2013), which were applied to a random sample of (200) male and female students chose from al Anbar University. They were exposed to shock pressures. The results of the research showed that the sample has an average level of moral identity, and the degrees of the sample members have approached the level of the hypothetical medium. Moreover, the sample has an average level of social affiliation, and the average scores of the sample on the social affiliation scale were not statistically significant. Finally, there is a positive correlation between moral identity and social affiliation.
Retinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th
The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreIn this work, novel compounds of hydrazones derived from (2,4-dinitrophenyl) hydrazine were synthesized. Benzamides derivatives and sulfonamides derivatives were prepared from p-amino benzaldehyde. Then these compounds were condensed with (2,4-dinitrophenyl) hydrazine through Imine bond formation to give hydrazones compounds. The compounds were characterized using FT-IR (IR Affinity-1) spectrometer, and 1HNMR analyses. The majority of the compounds have a moderate antimicrobial activity against “Gram-positive bacteria staphylococcus Aureus, and staphylococcus epidermidis, Gram-negative bacteria Escherichia coli, and Klebsiella pneumoniae, and fungi species Candida albicans” using concentrations of 250 µg\ml.
Highly Modified Asphalt (HiMA) binders have garnered significant attention due to their superior resistance to rutting, fatigue cracking, and thermal distress under heavy traffic loads and extreme environmental conditions. While elastomeric polymers such as Styrene- Butadiene-Styrene (SBS) have been extensively used in HiMA applications, the potential of plastomeric polymers, including Polyethylene (PE) and Ethylene Vinyl Acetate (EVA), remains largely unexplored. This study aims to evaluate the performance of reference binder (RB) modified with plastomeric HiMA asphalt in comparison to SBS-modified binders and determine the optimal polymer dosage for achieving an optimal balance between rutting resistance and fatigue durability. The experi
... Show More