The aim of the study is to reveal the effect of the constructivist learning Model on the achievement and reflective thinking of the fifth grade literary Preparatory students in History subject. A random sample was chosen which consisted of 64 students divided into experimental and control groups, each group consisted of 32 students. The experimental group was taught via the constructivist learning model, and the control group was taught via the traditional method. The experiment was lasted for Eight weeks, each week taught two lessons. The researcher adopted the experimental design with partial control. The two groups were equalized statistically. The researcher used two instruments, the achievement test and the reflective thinking test. The results showed that the students of the experimental group that studied via the constructive learning model were superior to the students in the control group which studied via the traditional method in the achievement test and the reflective thinking test. This refers that teaching via constructivist learning Model is considered a good method and has a positive impact on teaching. When measuring the effect size of the independent variable (constructivism learning model) in the two dependent variables (achievement and reflective thinking), the results showed that the effect size was (big).
Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreThis case series aims to evaluate patients affected with post COVID‐19 mucormycosis from clinical presentation to surgical and pharmacological treatment to improve the disease prognosis.
This case series was conducted at a specialized surgery hospital in Baghdad Medical City for over 10 months. Fifteen cases who had mild to severe COVID‐19 infections followed by symptoms similar to aggressive periodontitis, such as mobility and bone resorption around the multiple maxillary teeth, were included in this case series.
This work deals with the preparation of a zeolite/polymer flat sheet membrane with hierarchical porosity and ion-exchange properties. The performance of the prepared membrane was examined by the removal of chromium ions from simulated wastewater. A NaY zeolite (crystal size of 745.8 nm) was prepared by conventional hydrothermal treatment and fabricated with polyethersulfone (15% PES) in dimethylformamide (DMF) to obtain an ion-exchange ultrafiltration membrane. The permeate flux was enhanced by increasing the zeolite content within the membrane texture indicating increasing the hydrophilicity of the prepared membranes and constructing a hierarchically porous system. A membrane contain
In this article, a continuous terminal sliding mode control algorithm is proposed for servo motor systems. A novel full-order terminal sliding mode surface is proposed based on the bilimit homogeneous property, such that the sliding motion is finite-time stable independent of the system’s initial condition. A new continuous terminal sliding mode control algorithm is proposed to guarantee that the system states reach the sliding surface in finitetime. Not only the robustness is guaranteed by the proposed controller but also the continuity makes the control algorithm more suitable for the servo mechanical systems. Finally, a numerical example is presented to depict the advantages of the proposed control algorithm. An application in the rota
... Show MoreIn cognitive radio system, the spectrum sensing has a major challenge in needing a sensing method, which has a high detection capability with reduced complexity. In this paper, a low-cost hybrid spectrum sensing method with an optimized detection performance based on energy and cyclostationary detectors is proposed. The method is designed such that at high signal-to-noise ratio SNR values, energy detector is used alone to perform the detection. At low SNR values, cyclostationary detector with reduced complexity may be employed to support the accurate detection. The complexity reduction is done in two ways: through reducing the number of sensing samples used in the autocorrelation process in the time domain and through using the Slid
... Show MoreUltra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o