This study aims at identifying the reality of alternative assessment for teachers of the first cycle of the basic education in the Sultanate of Oman with respect to the degree of teachers' use of alternative assessment strategies, level of self-efficacy for alternative assessment strategies, and attitude towards alternative assessment, and their relationship with other variables. To achieve the aims of the study, a descriptive research approach was utilized. A 5-point self-rated questionnaire was developed. It consists of three sections: Actual use of alternative assessment strategies (21 items), self-efficacy for alternative assessment strategies (21 items), and attitude towards alternative assessment (27 items). The psychometric properties of the questionnaire were examined in terms of validity and reliability. The questionnaire was administered to a sample of (392) teachers teaching grades (1-4) of the first cycle of the basic education from three governorates (Muscat, Batinah North, and Batinah South) in the Sultanate of Oman. Results showed that teachers' use of alternative assessment strategies was high, their level of self-efficacy for alternative assessment strategies was high, and their attitude towards alternative assessment was positive. Also, there were statistically significant differences among teachers in using alternative assessment strategies, level of self-efficacy for alternative assessment strategies, and attitude towards alternative assessment attributed to specialization and training in alternative assessment. However, there were no statistically significant differences among teachers in using alternative assessment strategies, level of self-efficacy for alternative assessment strategies, and attitude towards alternative assessment attributed to years of teaching experience, teaching quorum, and teaching load. The researcher recommends conducting workshops on alternative assessment for the teachers and more research in the area of alternative assessment
The unpredictable and huge data generation nowadays by smart computing devices like (Sensors, Actuators, Wi-Fi routers), to handle and maintain their computational processing power in real time environment by centralized cloud platform is difficult because of its limitations, issues and challenges, to overcome these, Cisco introduced the Fog computing paradigm as an alternative for cloud-based computing. This recent IT trend is taking the computing experience to the next level. It is an extended and advantageous extension of the centralized cloud computing technology. In this article, we tried to highlight the various issues that currently cloud computing is facing. Here
... Show MoreThe increased use of hybrid PET /CT scanners combining detailed anatomical information along withfunctional data has benefits for both diagnostic and therapeutic purposes. This presented study is to makecomparison of cross sections to produce 18F , 82Sr and68Ge via different reactions with particle incident energy up to 60 MeV as a part of systematic studies on particle-induced activations on enriched natNe, natRb, natGa 18O,85Rb, and 69Ga targets, theoretical calculation of production yield, calculation of requiredtarget and suggestion of optimum reaction to produce: Fluorine-18 , Strontium-82 andGermanium-68 touse in Hybrid Machines PET/CT Scanners.
Abstract: Facial defects resulting from neoplasms, congenital, acquired malformations or trauma can be restored with facial prosthesis using different materials and retention methods to achieve life-like look and function. A nasal prosthesis can re-establish aesthetic form and anatomic contours for mid-facial defects, often more effectively than by surgical reconstruction as the nose is relatively immobile structure. For successful results, lot of factors such as harmony, texture, color matching and blending of tissue interface with the prosthesis are important. The aim of this study is to describe the non-surgical rehabilitation with nasal prosthesis for an Iraqi patient who received rhinectomy as a result of squamous cell carcinoma of the
... Show MoreTwo unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.