Preferred Language
Articles
/
jperc-1036
Question Asking Skills: Levels, Conditions, Classification, and Types
...Show More Authors

The research aims to know the question asking skills in terms of levels, conditions, classification, and types. The research limited to the literature that dealt with the importance of questioning for students and teachers. The most important term used in the research is the skill (Ryan defined it as "the ability to perform with great efficiency, accuracy, and ease). The results of the research are as follows: 1. the questions asked by the schoolteacher within the assessment of students' learning. 2. Teachers should focus on the lower levels of learning (remembering, understanding and comprehension) and then evaluating students at the higher levels (synthesis and evaluation). 3. Teacher with good knowledge can skillfully use the questioning inside the class. The main research recommendations are: 1. Encouraging students to ask questions through procedural patterns that help them. 2. Motivating teachers to employ all types of the question-asking skills. The most important suggestion is to conduct a questionnaire to measure the question-asking skills among teacher who teaching social subjects.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
Advances In Animal And Veterinary Sciences
Serum and Testicular Testosterone Levels of Ram Lamb during Puberty
...Show More Authors

View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Journal Of Educational And Psychological Researches
Constructing a Scale for the Nine Types of Students Personality: Constructing a Scale for the Nine Types of Students Personality
...Show More Authors

Abstract

The current research aims to construct a scale for the nine types of students’ personality according to Rob Fitzel model. To do this, (162) items were formed that present the nine types of personality with (18) items for each type. To test the validity of the scale, a sample of (584) students of Al-Mustansrya University were chosen. The data of their responses was analyzed by using factor analysis. The findings explored (9) factors as one factor for each type of personality with (12) items for each one. Then, the reliability of the scale was found by using the test-retest method and Alfa Cronbach method.

View Publication Preview PDF
Publication Date
Fri May 10 2024
Journal Name
مجلة علوم الرياضة الدولية
تأثير تمرينات خاصة في تعلم مهارة القلبة الهوائية الامامية المستقيمة في الجمناستك الفني
...Show More Authors

View Publication
Publication Date
Wed Jan 01 2020
Journal Name
Advances In Science, Technology And Engineering Systems Journal
Bayes Classification and Entropy Discretization of Large Datasets using Multi-Resolution Data Aggregation
...Show More Authors

Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (9)
Crossref
Publication Date
Wed Apr 05 2023
Journal Name
Journal Of Agriculture And Crops
Distribution and Classification of Medicinal Plants in Zakhikhah Area of Al-Anbar Desert
...Show More Authors

This study included the Zakhikhah area in the Al- Anbar desert, which it bounded on the north, east, and west by the Euphrates River and on the south by the Ramadi-Qaim road. Several exploratory field trips were taken to the study area. During this time, a semi-detailed area survey was carried out based on satellite imagery captured by American Land sat-7, topographic maps, and natural vegetation variance. All necessary field tools, including a digital camera and GPS device, were brought to determine the soil type and collect plant samples. All of these visits are planned to cover the entire state of Zakhikhah. All vegetation cover observations, identifying sampling sites and attempting to inventory and collect medicinal plants in t

... Show More
View Publication
Crossref
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Nov 03 2020
Journal Name
Iium Medical Journal Malaysia
Role of the Immunohistochemical Marker (Ki67) in Diagnosis and Classification of Hydatidiform Mole
...Show More Authors

Introduction: Since the hallmark of gestational trophoblastic disease is trophoblastic proliferation, Ki67 is regarded as the best marker in studying hydatidiform mole.This study was conducted to evaluate the role of this proliferative marker in distinguishing among hydropic abortion, partial and complete hydatidiform mole. Materials and methods: This is a cross sectional study involving the application of Ki67 on a total of 90 histological samples of curetting materials from molar (partial and complete mole) and non molar hydropic abortion belong to Iraqi females, so three study groups were created. Immunohistochemical expression in villous cytotrophoblasts, syncytiotrophoblasts and stromal cells were recorded separately by three i

... Show More
View Publication
Crossref
Publication Date
Tue Sep 10 2019
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
A classification model on tumor cancer disease based mutual information and firefly algorithm
...Show More Authors

View Publication
Scopus (15)
Crossref (6)
Scopus Crossref
Publication Date
Sat Jul 06 2024
Journal Name
Multimedia Tools And Applications
Text classification based on optimization feature selection methods: a review and future directions
...Show More Authors

A substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (7)
Scopus Crossref