The objective of all planning research is to plan for human comfort and safety, and one of the most significant natural dangers to which humans are exposed is earthquake risk; therefore, earthquake risks must be anticipated, and with the advancement of global technology, it is possible to obtain information on earthquake hazards. GIS has been utilized extensively in the field of environmental assessment research due to its high potential, and GIS is a crucial application in seismic risk assessment. This paper examines the methodologies used in recent GIS-based seismic risk studies, their primary environmental impacts on urban areas, and the complexity of the relationship between the applied methodological approaches and the resulting environmental risk assessments. Using spatial analysis techniques based on the history of spatial earthquakes, fault lines, and residential complexes. This article provides map which depict the most significant seismic danger zones in Iran. The analysis reveals that the area of very dangerous and earthquake-prone zone is equal to (12%) from the residential areas, it is concentrated in the western region, adjacent to Iraq and close to the tectonic plate. The dangerous areas are concentrated in the western side of Iran, extending from the north to the south (20%), which is a fairly large percentage. As for the critical area by earthquake-prone, they are concentrated in the northern regions (23%), The medium critical areas are frequent in the centre and the north-east in Iran, and it is the largest area (26%), while the areas that less affected by the risk of an earthquake, are concentrated in the middle (17%), As for the areas that are not affected by the risk of earthquakes, (1%).
Treatment of a high strength acidic industrial wastewater was attempted by activated carbon
adsorption to evaluate the feasibility of yielding effluents of reusable qualities. The experimental
methods which were employed in this investigation included batch and column studies. The
former was used to evaluate the rate and equilibrium of carbon adsorption, while the latter was
used to determine treatment efficiencies and performance characteristics. Fixed bed and expanded
bed adsorbers were constructed in the column studies. In this study, the adsorption behavior of acetic acid onto activated carbon was examined as a function of the concentration of the adsorbate, contact time and adsorbent dosage. The adsorption data was mo
Removal of heavy metal ions such as, cadmium ion (Cd 2+) and lead ion (Pb 2+) from aqueous solution onto Eichhornia (water hyacinth) activated carbon (EAC) by physiochemical activation with potassium hydroxide (KOH) and carbon dioxide (CO2) as the activating agents were investigated. The Eichhornia activated carbon was characterized by Brunauer Emmett Teller (BET), Fourier Transform Infrared spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) techniques. Whereas, the effect of adsorbent dosage, contact time of pH, and metal ion concentration on the adsorption process have been investigated using the batch process t
To damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. Double input multiband Power system stabilizers (PSSs) were used to damp out low-frequency oscillations in power system. Among dual-input PSSs, PSS4B offers superior transient performance. Power system simulator for engineering (PSS/E) software was adopted to test and evaluate the dynamic performance of PSS4B model on Iraqi national grid. The results showed
... Show MoreThe need for quick airborne transportation is critical, especially in emergencies. Drones with suspended payloads might be used to accomplish quick airborne transportation. Due to the environment or the drone's motion, the slung load may oscillate and lead the drone to fall. The altitude and attitude controls are the backbones of the drone's stability, and they must be adequately designed. Because of their symmetrical and simple structure, quadrotor helicopters are one of the most popular drone classes. In this work, a genetic algorithm with two weighted terms fitness function is used to adjust a Proportional-Integral-Derivative (PID) controller to compensate for the altitude and attitude controllers in a quadrotor drone
... Show MoreTo accommodate utilities in buildings, different sizes of openings are provided in the web of reinforced concrete deep beams, which cause reductions in the beam strength and stiffness. This paper aims to investigate experimentally and numerically the effectiveness of using carbon fiber reinforced polymer (CFRP) strips, as a strengthening technique, to externally strengthen reinforced concrete continuous deep beams (RCCDBs) with large openings. The experimental work included testing three RCCDBs under five-point bending. A reference specimen was prepared without openings to explore the reductions in strength and stiffness after providing large openings. Openings were created symmetrically at the center of spans of the other specimens
... Show MorePotential data interpretation is significant for subsurface structure characterization. The current study is an attempt to explore the magnetic low lying between Najaf and Diwaniyah Cities, In central Iraq. It aims to understand the subsurface structures that may result from this anomaly and submit a better subsurface structural image of the region. The study area is situated in the transition zone, known as the Abu Jir Fault Zone. This tectonic boundary is an inherited basement weak zone extending towards the NW-SE direction. Gravity and magnetic data processing and enhancement techniques; Total Horizontal Gradient, Tilt Angle, Fast Sigmoid Edge Detection, Improved Logistic, and Theta Map filters highlight source boundaries and the
... Show MoreThe complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Tra
... Show More