Urban land price is the primary indicator of land development in urban areas. Land prices in holly cities have rapidly increased due to tourism and religious activities. Public agencies are usually facing challenges in managing land prices in religious areas. Therefore, they require developed models or tools to understand land prices within religious cities. Predicting land prices can efficiently retain future management and develop urban lands within religious cities. This study proposed a new methodology to predict urban land prices within holy cities. The methodology is based on two models, Linear Regression (LR) and Support Vector Regression (SVR), and nine variables (land price, land area, distance to a river, distance to main roads, distance to heritage locations, distance to historical mosques, distance to commercial locations, distance to educational locations, and distance to hospital and clinics. Our findings showed that the SVR model had outperformed the LR model, where SVR achieved an accuracy of 82.9%.In contrast, LR has achieved 75.40%. Therefore, the presented models can assess land prices in holly cities like Al-Kufa. Furthermore, this tool can retain land pricing, land management, and urban planning in Iraq.
Achieving an accurate and optimal rate of penetration (ROP) is critical for a cost-effective and safe drilling operation. While different techniques have been used to achieve this goal, each approach has limitations, prompting researchers to seek solutions. This study’s objective is to conduct the strategy of combining the Bourgoyne and Young (BYM) ROP equations with Bagging Tree regression in a southern Iraqi field. Although BYM equations are commonly used and widespread to estimate drilling rates, they need more specific drilling parameters to capture different ROP complexities. The Bagging Tree algorithm, a random forest variant, addresses these limitations by blending domain kno
Estimation of the tail index parameter of a one - parameter Pareto model has wide important by the researchers because it has awide application in the econometrics science and reliability theorem.
Here we introduce anew estimator of "generalized median" type and compare it with the methods of Moments and Maximum likelihood by using the criteria, mean square error.
The estimator of generalized median type performing best over all.
The Purpose of this research is a comparison between two types of multivariate GARCH models BEKK and DVECH to forecast using financial time series which are the series of daily Iraqi dinar exchange rate with dollar, the global daily of Oil price with dollar and the global daily of gold price with dollar for the period from 01/01/2014 till 01/01/2016.The estimation, testing and forecasting process has been computed through the program RATS. Three time series have been transferred to the three asset returns to get the Stationarity, some tests were conducted including Ljung- Box, Multivariate Q and Multivariate ARCH to Returns Series and Residuals Series for both models with comparison between the estimation and for
... Show MoreThis research deals with the role of Qur’anic intents in facilitating and facilitating the understanding of the reader and the seeker of knowledge of the verses of the Holy Qur’an, particularly in the doctrinal investigations (prophecies), and the feature that distinguishes reference to the books of the intentions or the intentional interpretations is that it sings from referring to the books of speakers and delving into their differences in contractual issues and facilitating access To the meanings, purposes and wisdom that the wise street wanted directly from the rulings and orders contained in the verses of the wise Qur’an.
Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MoreA seemingly uncorrelated regression (SUR) model is a special case of multivariate models, in which the error terms in these equations are contemporaneously related. The method estimator (GLS) is efficient because it takes into account the covariance structure of errors, but it is also very sensitive to outliers. The robust SUR estimator can dealing outliers. We propose two robust methods for calculating the estimator, which are (S-Estimations, and FastSUR). We find that it significantly improved the quality of SUR model estimates. In addition, the results gave the FastSUR method superiority over the S method in dealing with outliers contained in the data set, as it has lower (MSE and RMSE) and higher (R-Squared and R-Square Adjus
... Show MoreThe purpose of this paper is to apply different transportation models in their minimum and maximum values by finding starting basic feasible solution and finding the optimal solution. The requirements of transportation models were presented with one of their applications in the case of minimizing the objective function, which was conducted by the researcher as real data, which took place one month in 2015, in one of the poultry farms for the production of eggs
... Show MoreThe solution to the problems and challenges of the twenty-first century requires the absorption of many transformations, such as demographic change, poverty reduction, the expansion of safe and clean energy without affecting the environment, as well as reducing health risks and other transitions. It also requires greater cooperation than is possible in the current global system, because both of these constraints and challenges, even if addressed locally or nationally, are because of the potential for their transnational impact, that is, their impact on the lives of people at the global level, Which is necessary to be fully addressed unless it is guided by a comprehensive global vision. This is what environmental governance provides in te
... Show MoreThe research aims to identify the possibility of applying environmental fines to commercial shops and restaurants to reduce the environmental pollution represented by the wastes generated from them. The research sample was divided into two groups, including the first (20) commercial shops (meat shops and slaughter it, fruits & vegetables, legumes and accessories) and second (30) Restaurant in the city of Baghdad on both sides of Karkh and Rusafa. The quality of the waste was classified into carton, plastic, aluminum, glass, paper, cork and food waste. The study revealed the possibility of applying environmental fines to restaurants and shops to reduce the waste generated from them throughout the year and to apply continuous monitorin
... Show MoreEstimation the unknown parameters of a two-dimensional sinusoidal signal model is an important and a difficult problem , The importance of this model in modeling Symmetric gray- scale texture image . In this paper, we propose employment Deferential Evaluation algorithm and the use of Sequential approach to estimate the unknown frequencies and amplitudes of the 2-D sinusoidal components when the signal is affected by noise. Numerical simulation are performed for different sample size, and various level of standard deviation to observe the performance of this method in estimate the parameters of 2-D sinusoidal signal model , This model was used for modeling the Symmetric gray scale texture image and estimating by using
... Show More