The centers of cities and historical quarter are exposed to a severe threat to the values of the physical and legal urban environment as a result of the value deterioration and the emergence, emergence and spread of new values on the intellectual and urban context, which generates the loss of the urban environment for its spatio-temporal continuity, flexibility, adaptation and continuity, and thus urban obsolescence, Hence the problem of the research in “the lack of comprehensiveness of studies on the phenomenon of urban obsolescence and its impact on the decline in the values of the quality of the built environment in historical quarters”, and accordingly the goal of the research was determined in “building a theoretical framework for the phenomenon of urban obsolescence and exploring the impact of this phenomenon on the quality of the built environment of historical quarters”, The research assumes the multiplicity and varying levels of urban obsolescence in the historical quarters, which affects the quality of the assets of these quarters. The research aims to provide this knowledge by adopting the descriptive analytical approach for a number of urban studies to reach the identification of the main vocabulary related to the phenomenon of urban obsolescence and to extract the most important definitions and causes. This is reflected in the quality levels of urban assets in them.
<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreThe preparation of a new Azo compounds of highly conjugated dimeric and polymeric liquid crystal to achieve the crystalline characteristics Which have structures assigned based on elemental analysis, IR 1HNMR and CHNS-O while mesogenic properties have been set for DSC and hot-stage polarizing optical microscopy. The compounds show enantiotropicnematic phase being displayed. The compounds show photoluminescence properties in the organic solution at room temperature, with the fluorescence band centered around 400 nm.
D-mannose sugar was used to prepare [benzoic acid 6-formyl-2,2-dimethyl-tetrahydrofuro[3,4-d][1,3]dioxol-4-yl ester] (compound A). The condensation reaction of folic acid with (compound A) resulted in the formation of new ligand [L]. These compounds were characterized by elemental analysis CHN, atomic absorption A.A, (FT-I.R.), (U.V.-Vis), TLC, E.S. mass (for electrospray), molar conductance, and melting point. The new tetradentate ligand [L], reacted with two moles of some selected metal ions and two moles of (2-aminophenol), (metal : ligand : 2-aminophenol) at reflux in water medium to give a series of new complexes of the general formula K2[M2(L)(HA)2] where M= Co(II), Ni(II), Cu(II) and Cd(II). These complexes were characterized by elem
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreThe preparation and characterization of the Cu (II), Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) metal complexes of heterocyclic azo ligand 2-[(4`-sulphamide phenyl) azo] -4,5-diphenyl imidazole (4-SuBAI) have been studied by elemental analysis, FT-IR and UV-Vis Spectroscopic, magnetic moment and molar conductance methods. The analytical data showed that all chelate complexes were prepared with (metal-ligand) ratio of (1:2). The general formula of these complexes was [ML2X2]. nH2O [were L=2-[(4`-sulphamide phenyl) azo]-4,5-diphenyl imidazole and X=Cl, and the octahedral geometry were suggested for these complexes .