This research develops a new method based on spectral indices and random forest classifier to detect paddy rice areas and then assess their distributions regarding to urban areas. The classification will be conducted on Landsat OLI images and Landsat OLI/Sentinel 1 SAR data. Consequently, developing a new spectral index by analyzing the relative importance of Landsat bands will be calculated by the random forest. The new spectral index has improved depending on the most three important bands, then two additional indices including the normalized difference vegetation index (NDVI), and standardized difference built-up index (NDBI) have been used to extract paddy rice fields from the data. Several experiments being conducted to analyze and understand the strengths and weakness of the proposed new method. This research shows that spectral indices are easy and accurate tool for rapid mapping of paddy rice fields in complicated environment where urban features are dominated. The outcomes of this research could help mapping and decision makers to progress their productivity and strategic plans for better management of rice fields.
In this study, the fission track registration technique with the CR-39 detector are using to determination the uranium concentrations for seventeen samples of teeth distributed in four districts in Baghdad City .Five samples taken from both Al-Durra District and Al-Jadiriyia District, Four samples taken from Al-Karrda (Alaatar street) Taken four samples and three samples taken from Al-Zuafrania and by 0.5gm in weight and 1.5 mm in thickness. The uranium concentrations in teeth samples measured by using fission tracks registration in (CR-39) track detector that caused by the bombardment of (U) with thermal neutrons from (241 Am-Be) neutron source that has flux of (5 ×103 n cm-2 s-1). The concen
... Show MoreThis paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4
... Show MoreWe propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St
... Show MoreIn this study, the results of the uranium concentrations and specific activity in 10 rice samples are described using a solid-state track detector (CR-39). Samples were collected from various local Iraqi markets with different origins (Iraq, India, America, and Thailand). Our findings found that the results of uranium concentration in all studied samples are ranging from (0.55 ± 0.28 to 1.74 ± 0.31) ppm with a weighted average of (1.24 ± 0.99) ppm. Also, results demonstrate that the specific activity values of the studied samples swing between values of (6.88 ± 3.52 and 21.49 ± 3.85) Bq/Kg. The obtained results of the studied rice samples are indicated that it is less than the acceptable limit of those studies established by ma
... Show MoreIn the present work, pattern recognition is carried out by the contrast and relative variance of clouds. The K-mean clustering process is then applied to classify the cloud type; also, texture analysis being adopted to extract the textural features and using them in cloud classification process. The test image used in the classification process is the Meteosat-7 image for the D3 region.The K-mean method is adopted as an unsupervised classification. This method depends on the initial chosen seeds of cluster. Since, the initial seeds are chosen randomly, the user supply a set of means, or cluster centers in the n-dimensional space.The K-mean cluster has been applied on two bands (IR2 band) and (water vapour band).The textural analysis is used
... Show MoreData Driven Requirement Engineering (DDRE) represents a vision for a shift from the static traditional methods of doing requirements engineering to dynamic data-driven user-centered methods. Data available and the increasingly complex requirements of system software whose functions can adapt to changing needs to gain the trust of its users, an approach is needed in a continuous software engineering process. This need drives the emergence of new challenges in the discipline of requirements engineering to meet the required changes. The problem in this study was the method in data discrepancies which resulted in the needs elicitation process being hampered and in the end software development found discrepancies and could not meet the need
... Show MoreAlthough the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .
In this paper a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet
... Show More
