The research deals with one of the urban problems facing cities, namely the existence of neglected urban spaces that need to be activated , These spaces give a negative image of the city, is not conducive to life and social interactions or the city has a one distinctive urban experience, leading to a reduction peoples' confidence in revisiting of those areas, hinder the rest of the activities in that region . Because these spaces are of the basic components of the city and give it its identity through the elements and entities that constitute it , The idea of research emerged in the reclaiming of these spaces within contemporary urban trends and the activation of flexible , short-term and inovation for that purpose within the fabric of the city. The research problem : (The need to clarify the nature of urban physical interventions contributing to the activation of neglected urban space) For the purpose of solving the problem of research, a method is required consisting of several stages, first: to identify the types of temporary interventions adopted in the neglected spaces, second: selecting which contributed to the activation of space through a practical study on an elected sample (Khader Elias region)Keywords: reclaiming , temporary intervention, types of temporary interventions, objectives of temporary intervention
In the present paper, a simply* compact spaces was introduced it defined over simply*- open set previous knowledge and we study the relation between the simply* separation axioms and the compactness, in addition to introduce a new types of functions known as 𝛼𝑆 𝑀∗ _irresolte , 𝛼𝑆 𝑀∗ __𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 and 𝑅 𝑆 𝑀∗ _ continuous, which are defined between two topological spaces.
Fibrewise topological spaces theory is a relatively new branch of mathematics, less than three decades old, arisen from algebraic topology. It is a highly useful tool and played a pivotal role in homotopy theory. Fibrewise topological spaces theory has a broad range of applications in many sorts of mathematical study such as Lie groups, differential geometry and dynamical systems theory. Moreover, one of the main objects, which is considered in fibrewise topological spaces theory is connectedness. In this regard, we of the present study introduce the concept of connected fibrewise topological spaces and study their main results.
We introduce and discuss recent type of fibrewise topological spaces, namely fibrewise soft bitopological spaces. Also, we introduce the concepts of fibrewise closed soft bitopological spaces, fibrewise open soft bitopological spaces, fibrewise locally sliceable soft bitopological spaces and fibrewise locally sectionable soft bitopological spaces. Furthermore, we state and prove several propositions concerning these concepts.
Urban morphological approach (concepts and practices) plays a significant role in forming our cities not only in terms of theoretical perspective but also in how to practice and experience the urban form structures over time. Urban morphology has been focused on studying the processes of formation and transformation of urban form based on its historical development. The main purpose of this study is to explore and describe the existing literature of this approach and thus aiming to summarize the most important studies that put into understanding the city form. In this regard, there were three schools of urban morphological studies, namely: the British, the Italian, and the French School. A reflective comparison between t
... Show MoreA complete metric space is a well-known concept. Kreyszig shows that every non-complete metric space can be developed into a complete metric space , referred to as completion of .
We use the b-Cauchy sequence to form which “is the set of all b-Cauchy sequences equivalence classes”. After that, we prove to be a 2-normed space. Then, we construct an isometric by defining the function from to ; thus and are isometric, where is the subset of composed of the equivalence classes that contains constant b-Cauchy sequences. Finally, we prove that is dense in , is complete and the uniqueness of is up to isometrics
Form the series of generalization of the topic of supra topology is the generalization of separation axioms . In this paper we have been introduced (S * - SS *) regular spaces . Most of the properties of both spaces have been investigated and reinforced with examples . In the last part we presented the notations of supra *- -space ( =0,1) and we studied their relationship with (S * - SS *) regular spaces.
In this work , impact strength and the water absorption ratio of powders of white and brown local chicken eggshell reinforced epoxy with different volume fractions ( 1 , 2 , 3 , 4 and 5 % ) were studied . The experimental results show that composite filled by ( 1 % Vol . )of white eggshell powder exhibited maximum impact strength and high resistance to tape water , so we choose this volume fraction to use the epoxy composite in coating . Optical microscopic observations are taken to develop a better understanding of the phenomena taking place in the material system at microscopic level .
This research aims to demonstrate the knowledge pillars of the product life cycle assessment technique and how to measure the cost according to this technique, and to clarify its role in reducing costs, improving product quality and optimizing the use of available resources, and a set of results has been reached, the most important of which are: The separation of environmental costs through the use of product life cycle assessment technique helps the Management in handling the increase of these costs, reducing the rates of environmental pollution and preserving resources, which contributes to achieving the sustainability of the product, and based on the results obtained, a set of recommendations were presented, the most important of which w
... Show More