This research discusses the subject of identity in the urban environment as it attempts to answer a number of questions that come with the concept of identity. The first of these questions: What is identity? Can a definition or conceptual framework be developed for identity? What about individual, collective, cultural, ethnic, political and regional identity? Is there a definition of identity in the urban environment in particular? If there is a definition of identity, what about social mobility responsible for social change? How can we see identity through this kinetics? Can we assume that identity in the urban environment has a variable structure or is of variable shape with a more stable structure? Can we determine the spatial-temporal path to change the shape and structure of urban identity in the urban environment?
Fibrewise topological spaces theory is a relatively new branch of mathematics, less than three decades old, arisen from algebraic topology. It is a highly useful tool and played a pivotal role in homotopy theory. Fibrewise topological spaces theory has a broad range of applications in many sorts of mathematical study such as Lie groups, differential geometry and dynamical systems theory. Moreover, one of the main objects, which is considered in fibrewise topological spaces theory is connectedness. In this regard, we of the present study introduce the concept of connected fibrewise topological spaces and study their main results.
We introduce and discuss recent type of fibrewise topological spaces, namely fibrewise soft bitopological spaces. Also, we introduce the concepts of fibrewise closed soft bitopological spaces, fibrewise open soft bitopological spaces, fibrewise locally sliceable soft bitopological spaces and fibrewise locally sectionable soft bitopological spaces. Furthermore, we state and prove several propositions concerning these concepts.
Abstract. One of the fibrewise micro-topological space is one in which the topology is decided through a group of fibre bundles, in comparison to the usual case in normal, fibrewise topological space. The micro-topological spaces draw power from their ability to be used in descriptions of a wide range of mathematical objects. These can be used to describe the topology of a manifold or even the topology of a group. Apart from easy manipulation, the fibrewise micro-topological spaces yield various mathematical applications, but the one being mentioned here is the possibility for geometric investigation of space or group structure. In this essay, we shall explain what fibrewise micro-topological spaces are, indicate why they are useful in math
... Show MoreThe study seeks to determine the levels of credit structure (independent variable) depending on its components (loans, credit disseminate, other facilities) To get the eight patterns of the structure of bank credit for the purpose of assessing the relationship between changes in levels of each style of structure credit (increase or decrease) and reflected in maximizing the value of the Bank(The adopted a measured variable depending on the approximate equation of simple Tobin's Q) to determine the style that achieves the highest value of the Bank, to take advantage of it in management, planning and control by knowing the strengths and weaknesses of the historical distribution of the facilities . the sample of the
... Show MoreThrough this descriptive study of the image of the Islamic Republic of Iran in the independent Iraqi press, the researcher relies on surveys, content analysis, and observation tools. The research community selected was the Iraqi independent press, represented by the Al-Zaman, Al-Dustour, and Al-Mada newspapers. The researcher adopts the comprehensive inventory method for newspaper issues produced between October 2019 and January 2020.
The results of this study show that Iran's interference in Iraq's internal affairs was one of the most prominent components of the picture that independent Iraqi newspapers seek to paint about the Islamic Republic of Iran.
In this paper we define and study new concepts of fibrwise totally topological spaces over B namely fibrewise totally compact and fibrwise locally totally compact spaces, which are generalization of well known concepts totally compact and locally totally compact topological spaces. Moreover, we study relationships between fibrewise totally compact (resp, fibrwise locally totally compact) spaces and some fibrewise totally separation axioms.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near compact and fibrewise locally near compact spaces, which are generalizations of well-known concepts near compact and locally near compact topological spaces. Moreover, we study relationships between fibrewise near compact (resp., fibrewise locally near compact) spaces and some fibrewise near separation axioms.
The primary objective of this paper is to introduce a new concept of fibrewise topological spaces on D is named fibrewise multi- topological spaces on D. Also, we entroduce the concepts of multi-proper, fibrewise multi-compact, fibrewise locally multi-compact spaces, Moreover, we study relationships between fibrewise multi-compact (resp., locally multi-compac) space and some fibrewise multi-separation axioms.
In this paper by using δ-semi.open sets we introduced the concept of weakly δ-semi.normal and δ-semi.normal spaces . Many properties and results were investigated and studied. Also we present the notion of δ- semi.compact spaces and we were able to compare with it δ-semi.regular spaces
The purpose of this paper is to study a new types of compactness in the dual bitopological spaces. We shall introduce the concepts of L-pre- compactness and L-semi-P- compactness .