Due to its safety, low cost, real-time nature, and widespread availability, ultrasound has been employed as a diagnostic technique for numerous intraocular disorders. Unfortunately, speckle artifact that depends on the tissue is seen in ultrasound imaging. In this study, we present a technique for lowering speckle noise and enhancing ultrasound images to enhance human diagnostic performance. This technique combines the undecimated wavelet transform (UDWT) with a wavelet coefficient mapping function, which was utilized to improve the contrast of the denoised images acquired from the first component after the noise was removed using the UDWT. This technique can be used to enhance the visual quality of medical photographs as well as to enhance the functionality of computer-aided detection and diagnosis systems.
Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to
... Show MoreAs is known that the consumer price index (CPI) is one of the most important price indices because of its direct effect on the welfare of the individual and his living.
We have been address the problem of Strongly seasonal commodities in calculating (CPI) and identifying some of the solution.
We have used an actual data for a set of commodities (including strongly seasonal commodities) to calculate the index price by using (Annual Basket With Carry Forward Prices method) . Although this method can be successfully used in the context of seasonal&nbs
... Show MoreSurvival analysis is widely applied to data that described by the length of time until the occurrence of an event under interest such as death or other important events. The purpose of this paper is to use the dynamic methodology which provides a flexible method, especially in the analysis of discrete survival time, to estimate the effect of covariate variables through time in the survival analysis on dialysis patients with kidney failure until death occurs. Where the estimations process is completely based on the Bayes approach by using two estimation methods: the maximum A Posterior (MAP) involved with Iteratively Weighted Kalman Filter Smoothing (IWKFS) and in combination with the Expectation Maximization (EM) algorithm. While the other
... Show MoreSurvival analysis is one of the types of data analysis that describes the time period until the occurrence of an event of interest such as death or other events of importance in determining what will happen to the phenomenon studied. There may be more than one endpoint for the event, in which case it is called Competing risks. The purpose of this research is to apply the dynamic approach in the analysis of discrete survival time in order to estimate the effect of covariates over time, as well as modeling the nonlinear relationship between the covariates and the discrete hazard function through the use of the multinomial logistic model and the multivariate Cox model. For the purpose of conducting the estimation process for both the discrete
... Show MoreThe deployment of UAVs is one of the key challenges in UAV-based communications while using UAVs for IoT applications. In this article, a new scheme for energy efficient data collection with a deadline time for the Internet of things (IoT) using the Unmanned Aerial Vehicles (UAV) is presented. We provided a new data collection method, which was set to collect IoT node data by providing an efficient deployment and mobility of multiple UAV, used to collect data from ground internet of things devices in a given deadline time. In the proposed method, data collection was done with minimum energy consumption of IoTs as well as UAVs. In order to find an optimal solution to this problem, we will first provide a mixed integer linear programming m
... Show MoreIraq suffers the continuing lack of water resources in generdwether it is surface or underearth water or rain. The study of rain has got the utmost importance in order to the rain direction in Iraq and in Mosul in particular and what it will be in future. It also shows the wet as well as the dry seasons and the possibility of expecting them and expecting their quantities in order to invest them and to keep this vital resource The research deals with predict the wet and dry rainy seasons in Mosul using (SPI) Standardized precipitation index extracted from conversion of Gamma distribution to standardized normal distribution , depending on data of monthly rain amounts for 1940-2013 . Results showed existence of 31 w
... Show MoreIn this paper, we estimate the survival function for the patients of lung cancer using different nonparametric estimation methods depending on sample from complete real data which describe the duration of survivor for patients who suffer from the lung cancer based on diagnosis of disease or the enter of patients in a hospital for period of two years (starting with 2012 to the end of 2013). Comparisons between the mentioned estimation methods has been performed using statistical indicator mean squares error, concluding that the survival function for the lung cancer by using shrinkage method is the best
Information processing has an important application which is speech recognition. In this paper, a two hybrid techniques have been presented. The first one is a 3-level hybrid of Stationary Wavelet Transform (S) and Discrete Wavelet Transform (W) and the second one is a 3-level hybrid of Discrete Wavelet Transform (W) and Multi-wavelet Transforms (M). To choose the best 3-level hybrid in each technique, a comparison according to five factors has been implemented and the best results are WWS, WWW, and MWM. Speech recognition is performed on WWS, WWW, and MWM using Euclidean distance (Ecl) and Dynamic Time Warping (DTW). The match performance is (98%) using DTW in MWM, while in the WWS and WWW are (74%) and (78%) respectively, but when using (
... Show MoreDesign sampling plan was and still one of most importance subjects because it give lowest cost comparing with others, time live statistical distribution should be known to give best estimators for parameters of sampling plan and get best sampling plan.
Research dell with design sampling plan when live time distribution follow Logistic distribution with () as location and shape parameters, using these information can help us getting (number of groups, sample size) associated with reject or accept the Lot
Experimental results for simulated data shows the least number of groups and sample size needs to reject or accept the Lot with certain probability of
... Show MoreThis paper deals with numerical approximations of a one-dimensional semilinear parabolic equation with a gradient term. Firstly, we derive the semidiscrete problem of the considered problem and discuss its convergence and blow-up properties. Secondly, we propose both Euler explicit and implicit finite differences methods with a non-fixed time-stepping procedure to estimate the numerical blow-up time of the considered problem. Finally, two numerical experiments are given to illustrate the efficiency, accuracy, and numerical order of convergence of the proposed schemes.