Stone Matrix Asphalt (SMA) is a gap-graded asphalt concrete hot blend combining high-quality coarse aggregate with a rich asphalt cement content. This blend generates a stable paving combination with a powerful stone-on-stone skeleton that offers excellent durability and routing strength. The objectives of this work are: Studying the durability performance of stone matrix asphalt (SMA) mixture in terms of moisture damage and temperature susceptibility and Discovering the effect of stabilized additive (Fly Ash ) on the performance of stone matrix asphalt (SMA) mixture. In this investigation, the durability of stone matrix asphalt concrete was assessed in terms of temperature susceptibility, resistance to moisture damage, and sensitivity to the variation in asphalt content. Specimens of 63.5 mm height and 102 mm diameter were compacted using the Marshall method at 150 °C. The optimum asphalt content was determined. Additional specimens were prepared with (0.5) percent below and above the OAC requirement. Specimens were subjected to indirect tensile strength (ITS) determination at (25 and 40) °C, and double punch shear strength determination. Another group of specimens was subjected to Marshall properties determination and to moisture damage. It was observed that stone matrix asphalt exhibit lower sensitivity to the change in asphalt content from the resistance to moisture damage and temperature susceptibility points of view. However, the tensile and shear properties exhibit significant sensitivity to the variation in asphalt content.
In this study, the effect of the annealing temperature on the material properties and the structural properties of cuprous oxide was studied in order to investigate how the annealing temperature affects the material properties, and the temperature varied between 200℃, 300℃, 400℃ and 500 ℃ and was unannealed. The physical properties of the cuprous oxide were measured by X-ray diffraction (XRD). The XRD patterns showed that the Cu2O nanoparticles were highly pure, crystalline, and nano-sized. From the XRD results, we found the pure cuprite (Cu2O) phase. The values of crystal size were discovered and calculated by the Halder-Wagner and Size-Strain Plot (SSP) methods, respectively. The crystallite size increased
... Show More
Nanomaterials have an excellent potential for improving the rheological and tribological properties of lubricating oil. In this study, oleic acid was used to surface-modify nanoparticles to enhance the dispersion and stability of Nanofluid. The surface modification was conducted for inorganic nanoparticles (NPs) TiO₂ and CuO with oleic acid (OA) surfactant, where oleic acid could render the surface of TiO2-CuO hydrophobic. Fourier transform infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM) were used to characterize the surface modification of NPs. The main objective of this study was to investigate the influence of adding modified TiO₂-CuO NPs with weight ratio 1:1 on thermal-physical propertie
... Show MoreGypsum is one of the important construction materials in Iraq in plastering surfaces and gypsum board , the ability of gypsum to give a comfortable an aesthetic ambiance as a construction material increase the need of gypsum , The particle size , total surface area and particle size distribution were factors affecting plaster properties used for construction properties . In this study gypsum paste was used with different mixing ratios of particle size and studied the physical properties of these types of pastes named (standard consistency ,setting time ,density) and compressive strength . The results showed that the water to gypsum ratio increased with increasing the fineness of the gypsum to (0.75%) and the setting time to the maxi
... Show MoreThe structural properties of the CuO nanopowder oxide prepared reflux technique
without any templates or surfactant, using copper nitrate hydrate (Cu(NO)3 3H2O) in deionized
water with aqueous ammonia solution are reported. The Xrd analysis data and processing in origin
pro program used to get FWHM and integral width to study the effect of different synthesis times
was studied on the structural properties. It was found that values of crystal sizes are 17.274nm,
17.746nm, and 18.560nm, the size of nanoparticles is determined by Halder-Wagner, and 15.796
nm, 15.851nm, and 16.52nm, were calculated by Size-Strain Plot (SSP) method. The Sample was
considered to determine physical and microstructural paramete
The scarcity of irrigation water requires procedures of specific. One of these procedures is the implementation of the rationing system (a period of the irrigation followed by a period of the dry). This system can have an impact on the properties of irrigation channels. Therefore, the study of rationing system for irrigation channels is important in both water resources and civil engineering, especially if they are constructed with gypseous soil. In order to assess the rationing system on gypseous canals stabilized with a specific ratio of cement, practical experiments were conducted to detect the effect of wetting and drying cycles on the physical and hydraulic behavior of this soil and calculation of some properties of soil such a
... Show MoreThis work reports the study of heat treatment effect on the structural, morphological, optical and electrical properties of poly [3-hexylthiophene] and its blend with [6,6]-phenyl C61 butyric acid methyl ester ( P3HT:PC61BM). X-ray diffraction (XRD) measurements show that the crystallinity of the films increased with annealing. The evaluation of surface roughness and morphology was investigated using atomic force microscope (AFM), and field emission scanning microscope(FESEM). The optical properties were emphasized a strong optical absorption of P3HT compared with the blend. Hall effect measurement was used to study the electrical properties which revealed there is an increase in the electrical conductivity and Hall mobility of th
... Show MoreRare earth elements (Cerium, Lanthanum and Neodymium) doped CdS thin films are prepared using the chemical Spray Pyrolysis Method with temperature 200 oC. The X-ray diffraction (XRD) analysis refers that pure CdS and CdS:Ce, CdS:La and CdS:Nd thin films showed the hexagonal crystalline phase. The crystallite size determined by the Debye-Scherrer equation and the range was (35.8– 23.76 nm), and it was confirmed by field emission scanning electron microscopy (FE-SEM). The pure and doped CdS shows a direct band gap (2.57 to 2.72 eV), which was obtained by transmittance. The room-temperature photoluminescence of pure and doped CdS shows large peak at 431 nm, and two small peaks at (530 and 610 nm). The Current – voltage measurement in da
... Show Morehe research specifies important subjects which contribute in improvement of productive performance in industrial companies through study and analysis of relationships and effect between dimensions of physical work environment and industrial operations flexibility in the leathers industries company. To reach these goals the information are collected is questionnaire prepared for this purpose as a tool to analyze the practical results and are recorded for a sample of 118 persons from employees. The research uses the statistical methods and analyzes the information by using SPSS system. The research reached to many conclusions; the important one is the weakness of the company to make in to account the physical envir
... Show MoreThe using of recycled aggregates from construction and demolition waste (CDW) can preserve natural aggregate resources, reduce the demand for landfill, and contribute to a sustainable built environment. Concrete demolition waste has been proven to be an excellent source of aggregates for new concrete production. At a technical, economic, and environmental level, roller compacted concrete (RCC) applications benefit various civil construction projects. Roller Compacted Concrete (RCC) is a homogenous mixture that is best described as a zero-slump concrete placed with compacting equipment, uses in storage areas, dams, and most often as a basis for rigid pavements. The mix must be sufficiently dry to support
... Show MoreThe game of futsal requires physical and motor abilities in order to perform it, as these abilities play a fundamental role in making the player have a wonderful physical level and be able to implement the skill aspect of futsal football, especially the scoring skill, which is the subject of the study. The importance of the research lies in arriving at knowledge of the percentage The contribution of some physical and motor abilities to the performance of the scoring skill in indoor soccer, in order to reach final scientific results that serve researchers, coaches, and players alike. The research aims to identify the most important physical and motor abilities of young players in futsal football, and to identify the percentage of contributio
... Show More