Now-a-days the Flexible AC Transmission Systems (FACTS) technology is very effective in improving the power flow along the transmission lines and makes the power system more flexible and controllable. This paper deals with the most robust type of FACTS devices; it’s a Unified Power Flow Controller (UPFC). Many cases have been taken to study how the system behaves in the presence and absence of the UPFC under normal and contingency conditions. The UPFC is a device that can be used to improve the bus voltage, increasing the loadability of the line and reduce the active and reactive power losses in the transmission lines, through controlling the flow of real and reactive power. Both the magnitude and the phase angle of the voltage can be varied independently. The steady state model of UPFC has been adopted on IEEE-30 bus test system and simulated using MATLAB programming language. Newton Raphson (NR) numerical analysis method has been used for solving the load flow of the system. The practical part has been solved through Power System Simulation for Engineers (PSS\E) software Version 32.0. The Comparative results between the experimental and practical parts obtained from adopting the UPFC where too close and almost the same under different loading conditions, which are (5%, 10%, 15% and 20%) of the total load.
New chelating ligand derived from triazole and its complexes with metal ions Rhodium, Platinum and Gold were synthesized. Through a copper (I)-catalyzed click reaction, the ligand produced 1,3-dipolar cycloaddition between 2,6-bis((prop-2-yn-1-yloxy) methyl) pyridine and 1-azidododecane. All structures of these new compounds were rigorously characterized in the solid state using spectroscopic techniques like: 1HNMR, 13CNMR, Uv-Vis, FTIR, metal and elemental analyses, magnetic susceptibility and conductivity measurements at room temperature, it was found that the ligand acts as a penta and tetradentate chelate through N3O2, N2O2, and the geometry of the new complex
... Show MoreThis study estimated seven heavy metals (Fe, Cu, Zn, Pb, Ni, Cd, Cr) in water (dissolved and particulate phase), sediments and some aquatic organisms including two species from aquatic plants (Ceratophyllum demersum&Phragmites australis); one species of clam (Psedontopeses euphratics) and two species from fish (Oreochromis aureus& Leuciscus vorax)in four sites within Mashroo AL- Musayyib channel project/ branch of Euphrates river, Babylon , medial of Iraq . This aims to show the concentration of these elements, their fate and the mechanisms of their transmission through the food chain in this lotic aquatic system ; also in addition to examining some physicochemical properties of ri
... Show MoreEchinococcosis is a zoonotic disease caused by the larval stage of the tapeworm Echinococcus granulosus. This disease is an important public health and a significant economic issue in Iraq, where the lungs and livers are the popular places of infection. The aim of the current study focused on using the molecular techniques in the detection of an E. granulosus strain that causes cystic echinococcosis to human, sheep and cattle in Thi-Qar province, Iraq. In the current study, thirty isolates of E. granulosus were collected from 10 human hydatid cysts through surgery done at Al-Hussein Imam Teaching Hospital in Thi-Qar province and 10 sheep with 10 cattle hydatid cysts were obtained from the slaughterhouse in Thi-
... Show MoreCerium Oxide Nanoparticles (CeO2 NPs) and β-carotene are natural-source products that have recently gained an increased interest as pharmaceutical additives because of their effectiveness in living systems, but the behavior of these substances varies according to factors and conditions. The above mentioned materials were evaluated in breast normal (HBL-100) and cancer cell lines (CAL-51 and MCF-7 ) by different techniques ; MTT assay for studying cytotoxic effects, morphological changes, sqPCR, including gene expression of caspases 8 and 9, and P53. All experiments were conducted on cell lines by the use of the materials alone as well as their combination.
... Show MoreNew chelating ligand derived from triazole and its complexes with metal ions Rhodium, Platinum and Gold were synthesized. Through a copper (I)-catalyzed click reaction, the ligand produced 1,3-dipolar cycloaddition between 2,6-bis((prop-2-yn-1-yloxy) methyl) pyridine and 1-azidododecane. All structures of these new compounds were rigorously characterized in the solid state using spectroscopic techniques like: 1HNMR, 13CNMR, Uv-Vis, FTIR, metal and elemental analyses, magnetic susceptibility and conductivity measurements at room temperature, it was found that the ligand acts as a penta and tetradentate chelate through N3O2, N2O2, and the geometry of the new complexes are identified as octahedral for (Rh & Pt) complexes a
... Show MoreExperimental densities, viscosities η, and refractive indices nD data of the ternary ethanol+ n-hexane + 3-methyl pentane system have been determined at temperatures 293.15,303.15 and 313.15 K and at atmospheric pressure then these properties were calculated theoretically by using mixing rules for densities, viscosities and refractive indices .After that the theoretical data and the experimental data were compared due to the high relative errors in viscosities an equation of viscosity was proposed to decrease the relative errors.
A new ligand complexes have been synthesis from reaction of metal ions of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II) and Pt(II) with schiff base LH. 5-[(2-Hydroxy-naphthalen-1-ylmethylene)-amino]-2-phenyl-2,4-dihydro-pyrazol-3-one, this ligand was characterized by Fourier transform infrared (FTIR), UV-vis, 1H, 13CNMR, and mass spectra. All complexes were characterized by techniques micro analysis C.H.N, UV-vis and FTIR spectral studies, atomic absorption, chloride content, molar conductivity measurements and magnetic susceptibility. The ligand acts as bidentate, coordination through nitrogen atom from azomethin group and deprotonated phenolic oxygen atom. The spectroscopic and analytical measurements showed that
... Show More