Now-a-days the Flexible AC Transmission Systems (FACTS) technology is very effective in improving the power flow along the transmission lines and makes the power system more flexible and controllable. This paper deals with the most robust type of FACTS devices; it’s a Unified Power Flow Controller (UPFC). Many cases have been taken to study how the system behaves in the presence and absence of the UPFC under normal and contingency conditions. The UPFC is a device that can be used to improve the bus voltage, increasing the loadability of the line and reduce the active and reactive power losses in the transmission lines, through controlling the flow of real and reactive power. Both the magnitude and the phase angle of the voltage can be varied independently. The steady state model of UPFC has been adopted on IEEE-30 bus test system and simulated using MATLAB programming language. Newton Raphson (NR) numerical analysis method has been used for solving the load flow of the system. The practical part has been solved through Power System Simulation for Engineers (PSS\E) software Version 32.0. The Comparative results between the experimental and practical parts obtained from adopting the UPFC where too close and almost the same under different loading conditions, which are (5%, 10%, 15% and 20%) of the total load.
Practically, torsion is normally combined with flexure and shear actions. Even though, the behavior of reinforced concrete continuous beams under pure torsion is investigated in this study. It was performed on four RC continuous beams under pure torsion. In order to produce torsional moment on the external supports, an eccentric load was applied at various distances from the longitudinal axis of the RC beams until failure.
Variables considered in this study are absolute vertical displacement of the external supports, torsional moment’s capacity, angle of twist and first cracks occurrences. According to experimental results; when load eccentricity increased from 30cm to 60cm, the absolute vertical displacement i
... Show MoreThe study is devoted to both static and earthquake response analysis of retaining structures acted upon by lateral earth pressure. Two main approaches were implemented in the analysis, namely, the Mononobe-Okabe analytical method and the numerical Finite element procedure as provided in the ready software ABAQUS with explicit dynamic method. A basic case study considered in the present work is the bridge approach retaining walls as a part of AL-Jadiriya bridge intersection to obtain the effects of the backfill and the ground water on the retaining wall response including displacement of the retaining structure in addition to the behavior of the fill material. Parametric studies were carried out to evaluate the effects of several factors
... Show MoreThe inverse problem is important method in the design of electrostatic lenses which is used in this work, with new technique by suggesting an axial electrostatic potential distribution using polynomial functions of the third order. The paraxial-ray equation is solved to obtain the trajectory of particles that satisfy the suggested potential function.In this work design of immersion electrostatic lens operated under zero magnification condition. The electrode shape of sthe electrostatic lens was the dermined from the solution of laplace equation and plotted in two deimensions . The results showed low values of spherical and chromatic aberrations , which are considered as good criteria for good desigh.
Due to wind wave actions, ships impacts, high-speed vehicles and others resources of loading, structures such as high buildings rise bridge and electric transmission towers undergo significant coupled moment loads. In this study, the effect of increasing the value of coupled moment and increasing the rigidity of raft footing on the horizontal deflection by using 3-D finite element using ABAQUS program. The results showed that the increasing the coupled moment value leads to an increase in lateral deflection and increase in the rotational angle (α◦). The rotational angle increases from (0.014, 0.15 to 0.19) at coupled moment (120 kN.m), (0.29, 0.31 and 0.49) at coupled moment (240 kN.m) and (0.57, 0.63 and 1.03) at cou
... Show MoreIn this paper, a shallow foundation (strip footing), 1 m in width is assumed to be constructed on fully saturated and partially saturated Iraqi soils, and analyzed by finite element method. A procedure is proposed to define the H – modulus function from the soil water characteristic curve which is measured by the filter paper method. Fitting methods are applied through the program (SoilVision). Then, the soil water characteristic curve is converted to relation correlating the void ratio and matric suction. The slope of the latter relation can be used to define the H – modulus function. The finite element programs SIGMA/W and SEEP/W are then used in the analysis. Eight nodded isoparametric quadrilateral elements are used for modeling
... Show MoreIn order to study the dynamic response of historical masonry structures, a scaled down brick masonry model constructed in civil engineering department at Baghdad University to simulate a part of a real case study, which is Alkifil historic minaret. Most of the previous researches about masonry structures try to understand the behavior of the masonry under seismic loading by experimental and numerical methods. In this paper, the masonry units (bricks) simulated in scale (S= 1/6) with the exact shape of the prototype bricks. Cementitious tile adhesive was selected to be the mortar for the modeling. The height of the model designed to be 1.5 m with a 0.5 m diameter. Detailed construction steps were presented in this paper. Experts buil
... Show MoreThis paper presents a novel idea as it investigates the rescue effect of the prey with fluctuation effect for the first time to propose a modified predator-prey model that forms a non-autonomous model. However, the approximation method is utilized to convert the non-autonomous model to an autonomous one by simplifying the mathematical analysis and following the dynamical behaviors. Some theoretical properties of the proposed autonomous model like the boundedness, stability, and Kolmogorov conditions are studied. This paper's analytical results demonstrate that the dynamic behaviors are globally stable and that the rescue effect improves the likelihood of coexistence compared to when there is no rescue impact. Furthermore, numerical simul
... Show MoreSummary
The conflict between Arab and Zionist movement before 1948 was not normal dispute about certain issue or quarrel on borders, it is comprehensive conflict, this research intraduce analytical and outlook future reading about Palestine identity in time of occupation and resistance in the first studying we take the concept of identity and the fundamental relationship identity history and geography. Our research treated the contents of palest Iain and Isralian identsunder. The political, cultural and military conflict between Israil and Palestine. The research introduce analytic study of research introduce analytic study of intellectual orientation of Zionist state in order to determine the exact meaning of this identity, beca
... Show MoreNowadays, datacenters become more complicated and handle many more users’ requests. Custom protocols are becoming more demanded, and an advanced load balancer to distribute the requests among servers is essential to serve the users quickly and efficiently. P4 introduced a new way to manipulate all packet headers. Therefore, by making use of the P4 ability to decapsulate the transport layer header, a new algorithm of load balancing is proposed. The algorithm has three main parts. First, a TCP/UDP separation is used to separate the flows based on the network layer information about the used protocol in the transport layer. Second, a flow size prediction technique is adopted, which re
... Show MorePurpose: aims the study to show How to be can to enhance measurement management by incorporating a risk-based approach and the six sigma method into a more thorough assessment of metrological performance. Theoretical framework: Recent literature has recorded good results in analyzing the impact of Six Sigma and risk management on the energy sector (Barrera García et al., 2022) (D'Emilia et al. 2015). However, this research came to validate and emphasize the most comprehensive assessment of metrological performance by integrating Risk management based approach and Six Sigma analysis. Design/methodology/approach: This study was conducted in Iraqi petroleum refining companies. System quality is measured in terms of sigmas, and t
... Show More