In recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the road in all the sections of the country. Vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the developing system is consist of three phases, vehicle license plate localization, character segmentation, and character recognition, the License Plate (LP) detection is presented using canny Edge detection algorithm, Connect Component Analysis (CCA) have been exploited for segmenting characters. Finally, a Multi-Layer Perceptron Artificial Neural Network (MLPANN) model is utilized to recognize and detect the vehicle license plate characters, and hence the results are displayed as a text on GUI. The proposed system successfully identified and recognized multi_style Iraqi license plates using different image situations and it was evaluated based on different metrics performance, achieving an overall system performance of 91.99%. This results shows the effectiveness of the proposed method compared with other existing methods, whose average recognition rate is 86% and the average processing time of one image is 0.242s which proves the practicality of the proposed method.
Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreThe dependable and efficient identification of Qin seal script characters is pivotal in the discovery, preservation, and inheritance of the distinctive cultural values embodied by these artifacts. This paper uses image histograms of oriented gradients (HOG) features and an SVM model to discuss a character recognition model for identifying partial and blurred Qin seal script characters. The model achieves accurate recognition on a small, imbalanced dataset. Firstly, a dataset of Qin seal script image samples is established, and Gaussian filtering is employed to remove image noise. Subsequently, the gamma transformation algorithm adjusts the image brightness and enhances the contrast between font structures and image backgrounds. After a s
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreSmall and Medium Enterprises (SMEs) in Iraq have experienced low performance due to the limited usage of accounting information systems (AIS) and the inability to exploit knowledge of management capabilities (KMC). These deficiencies have led to competitive pressures in the marketplace that have adversely affected their sales and production. This study investigates the role of AIS in terms of operation support, knowledge support, regulatory support, and the role of KMC, including knowledge acquisition, knowledge transfer, and knowledge utilized to enhance organizational performance in Iraqi SMEs. The target population was managers and owners in SMEs using AIS in Iraq’s cities. A non-probability purposive sampling technique was use
... Show MoreThe increase in population resulted in an increase in the consumption of water. The present work investigates the performance of a recycling solar- powered greywater treatment system for the purposes of irrigation, used to reduce the amount of waste grey water and reduce electricity consumption and reduce the costs of constructing large scale water treatment plants. The system consumes about 3814W per hour and provides water treatment about 1.4 m3 per day. The proposed system is designed to residential, office and governmental buildings application. Tests are conducted in an office building at the Ministry of Science and Technology site in Baghdad. Laboratorial water samples testing analyses are co
... Show MoreLaser-Induced Breakdown Spectroscopy (LIBS) has been documented as an Atomic Emission Spectroscopy (AES) technique, utilising laser-induced plasma, in order to analyse elements in materials (gases, liquids and solid). The Nd:YAG laser passively Q-switched at 1064nm and 9ns pulse duration focused by convex lens with focal length 100 mm to generates power density 5.5×1012 Mw/mm2 with optical spectrum in the range 320-740 nm. Four soil samples were brought from different northern region of Iraq, northern region (Beiji, Sherkat, Serjnar and Zerkary).
The soil of the Northern region of Beige, Sherkat, Serjnar and Zarkary has abundant ratios of the elements P [0.08, 0.09, 0.18, 0.18] and Ca [0.61, 0.15, 0.92, 0.92] while it lack of Si [0.0