Preferred Language
Articles
/
joe-964
Effect of Maximum Size of Aggregate on the Behavior of Reinforced Concrete Beams Analyzed using Meso Scale Modeling

In this study, simply supported reinforced concrete (RC) beams were analyzed using the Extended Finite Element Method (XFEM). This is a powerful method that is used for the treatment of discontinuities resulting from the fracture process and crack propagation in concrete. The mesoscale is used in modeling concrete as a two-phasic material of coarse aggregate and cement mortar. Air voids in the cement paste will also be modeled. The coarse aggregate used in the casting of these beams is a rounded aggregate consisting of different maximum sizes. The maximum size is 25 mm in the first model, and in the second model, the maximum size is 20 mm. The compressive strength used in these beams is equal to 26 MPa.

The subjects of this study are two RC beams subjected to a two-point loading designed to fail due to flexure. The RC beams under loading were studied in the laboratory as well as numerically. ABAQUS program was used for modeling and analyzing the RC beams. The mesoscale modeling that was used to model the concrete required used a special program using different programs but has not used the ABAQUS program directly. The result of the comparison between the numerical and experimental showed that the mesoscale numerical model gave results that were more approximate to the experimental ones, and the mesoscale modeling of reinforced concrete is most convenient when the maximum size of aggregate is decreased.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Engineering
Strength of Reinforced Concrete Columns with Transverse Openings

The present work is concerned with the investigation of the behavior and ultimate capacity of axially loaded reinforced concrete columns in presence of transverse openings under axial load plus uniaxial bending. The experimental program includes testing of twenty reinforced concrete columns (150 × 150 × 700 mm) under concentric and eccentric load. Parameters considered include opening size, load eccentricity and influence of the direction of load eccentricity with respect to the longitudinal axis of the opening. Experimental results are discussed based on load – lateral mid height deflection curves, load – longitudinal shortening behavior, ultimate load and failure modes. It is found that when the direction of load

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Strengthening of GFRP Reinforced Concrete Slabs with Openings

Using fiber-reinforced polymer (FRP) could effectively improve the strength and endurance of reinforced concrete (RC) constructions. This study evaluated the flexural behavior of one-way concrete slabs with openings reinforced with glass fiber-reinforced polymers (GFRP) bars. It strengthened using carbon fiber-reinforced polymer (CFRP) sheets around the openings. The experimental program of this study is adopted by casting and testing four one-way concrete slabs with dimensions of (150*750*2650) mm. These slabs are divided into two groups based on whether they were strengthened or un-strengthened. For each group, two different openings (either one rectangular or two square) measured 250*500 mm and 250*250 mm, respective

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Sun Mar 01 2015
Journal Name
Journal Of Engineering
Finite Element Investigation on Shear Lag in Composite Concrete-Steel Beams with Web Openings

In this paper, effective slab width for the composite beams is investigated with special emphasis on the effect of web openings. A three dimensional finite element analysis, by using finite element code ANSYS, is employed to investigate shear lag phenomenon and the resulting effective slab width adopted in the classical T-beam approach. According to case studies and comparison with limitations and rules stipulated by different standards and codes of practice it is found that web openings presence and panel proportion are the most critical factors affecting effective slab width, whereas concrete slab thickness and steel beam depth are less significant. The presence of web opening reduces effective slab width by about 21%.

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 01 2024
Journal Name
Journal Of Engineering
Numerical Study of Composite Concrete Castellated Double Channel Beams with Strengthening Techniques

Current numerical research was devoted to investigating the effect of castellated steel beams without and with strengthening. The composite concrete asymmetrical double hot rolled steel channels bolted back to back to obtain a built-up I-shape form are used in this study. The top half part of the steel is smaller than the bottom half part, and the two parts were connected by bolting and welding. The ABAQUS/2019 program employed the same length and conditions of loading for four models: The first model is the reference without castellated and strengthening; the second model was castellated without strengthened; the third model was castellated and strengthened with reactive powder concrete encased in the

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Influence of the Beam Size Radiation on the Depth Dose by Using 60Co

Radiotherapy is medical use of ionizing radiation, and commonly applied to the
cancerous tumor because of its ability to control cell growth.
The amount of radiation used in photon radiation therapy called dose (measured
in grey unit), which depend on the type and stage of cancer being treated.
In our work, we studied the dose distribution given to the tumor at different
depths (zero-20 cm) treated with different field size (4×4- 23×23 cm).
Results show that the deeper treated area has less dose rate at the same beam
quality and quantity. Also it has been noted increasing in the field increasing in the
depth dose at the same depth even if the radiation energy is constant. Increasing in
radiation dose attribut

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 04 2013
Journal Name
Iraqi Journal Of Science
Influence of the Beam Size Radiation on the Depth Dose by Using 60Co

Radiotherapy is medical use of ionizing radiation, and commonly applied to the cancerous tumor because of its ability to control cell growth. The amount of radiation used in photon radiation therapy called dose (measured in grey unit), which depend on the type and stage of cancer being treated. In our work, we studied the dose distribution given to the tumor at different depths (zero-20 cm) treated with different field size (4×4- 23×23 cm). Results show that the deeper treated area has less dose rate at the same beam quality and quantity. Also it has been noted increasing in the field increasing in the depth dose at the same depth even if the radiation energy is constant. Increasing in radiation dose attributed to the scattere

... Show More
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Scopus Crossref
View Publication
Publication Date
Sat Feb 12 2022
Journal Name
Engineering, Technology & Applied Science Research
Prestressing Effects on Full Scale Deep Beams with Large Web Openings¨: An Experimental and Numerical Study

Most studies on deep beams have been made with reinforced concrete deep beams, only a few studies investigate the response of prestressed deep beams, while, to the best of our knowledge, there is not a study that investigates the response of full scale (T-section) prestressed deep beams with large web openings. An experimental and numerical study was conducted in order to investigate the shear strength of ordinary reinforced and partially prestressed full scale (T-section) deep beams that contain large web openings in order to investigate the prestressing existence effects on the deep beam responses and to better understand the effects of prestressing locations and opening depth to beam depth ratio on the deep beam performance and b

... Show More
Scopus (2)
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Nonlinear Analysis on Torsional Strengthening Of Rc Beams Using Cfrp Laminates

This research is devoted to investigate the behavior and performance of reinforced concrete beams strengthened with externally bonded Carbon Fiber Reinforced Polymer (CFRP) laminates under the effect of torsion. In this study a theoretical analysis has been conducted using finite element code ANSYS. Six previously tested beams are used to investigate reinforced concrete beams behavior
under torsion, two of them are solid and the rest are box-section beams. Also, two beams are without CFRP reinforcement, which are used as control beams for the strengthened one, and the other four beams are strengthened with CFRP laminates with different number of layers and spacing. Numerical investigation is conducted on these beams, and comparisons b

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Engineering
Fatigue Behavior of Modified Asphalt Concrete Pavement

Fatigue cracking is the most common distress in road pavement. It is mainly due to the increase in the number of load repetition of vehicles, particularly those with high axle loads, and to the environmental conditions. In this study, four-point bending beam fatigue testing has been used for control and modified mixture under various micro strain levels of (250 μƐ, 400 μƐ, and 750 μƐ) and 5HZ. The main objective of the study is to provide a comparative evaluation of pavement resistance to the phenomenon of fatigue cracking between modified asphalt concrete and conventional asphalt concrete mixes (under the influence of three percentage of Silica fumes 1%, 2%, 3% by the weight of asphalt content), and (chan

... Show More
View Publication Preview PDF