This paper presents a complete design and implementation of a monitoring system for the operation of the three-phase induction motors. This system is built using a personal computer and two types of sensors (current, vibration) to detect some of the mechanical faults that may occur in the motor. The study and examination of several types of faults including (ball bearing and shaft misalignment faults) have been done through the extraction of fault data by using fast Fourier transform (FFT) technique. Results showed that the motor current signature analysis (MCSA) technique, and measurement of vibration technique have high possibility in the detection and diagnosis of most mechanical faults with high accuracy. Subsequently, diagnosis system is developed to determine the status of the motor without the need for an expert. This system is based on artificial neural network (ANN) and it is characterized by speed and accuracy and the ability to detect more than one fault at the same time.
Image Fusion is being used to gather important data from such an input image array and to place it in a single output picture to make it much more meaningful & usable than either of the input images. Image fusion boosts the quality and application of data. The accuracy of the image that has fused depending on the application. It is widely used in smart robotics, audio camera fusion, photonics, system control and output, construction and inspection of electronic circuits, complex computer, software diagnostics, also smart line assembling robots. In this paper provides a literature review of different image fusion techniques in the spatial domain and frequency domain, such as averaging, min-max, block substitution, Intensity-Hue-Saturation(IH
... Show MoreInformation processing has an important application which is speech recognition. In this paper, a two hybrid techniques have been presented. The first one is a 3-level hybrid of Stationary Wavelet Transform (S) and Discrete Wavelet Transform (W) and the second one is a 3-level hybrid of Discrete Wavelet Transform (W) and Multi-wavelet Transforms (M). To choose the best 3-level hybrid in each technique, a comparison according to five factors has been implemented and the best results are WWS, WWW, and MWM. Speech recognition is performed on WWS, WWW, and MWM using Euclidean distance (Ecl) and Dynamic Time Warping (DTW). The match performance is (98%) using DTW in MWM, while in the WWS and WWW are (74%) and (78%) respectively, but when using (
... Show MoreBackground: Acute appendicitis is the most common surgical abdominal emergency with a life time prevalence of 1 to 7 individuals. Because the clinical diagnosis of acute appendicitis remains a challenge to surgeons, so different aids were introduced like different scoring systems, computer aided programs, ultrasonography, computerized tomography, Magnetic resonance imaging, Gastrointestinal tract contrast studies and laparoscopy to improve the diagnostic accuracy.
Objective: To evaluate ultrasound in the diagnosis of acute appendicitis in those patients clinically diagnosed with histopathology as gold standard.
Methods: A cross sectional study carried in Al-kindy Teaching
... Show MoreWith the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi
... Show MoreEye Detection is used in many applications like pattern recognition, biometric, surveillance system and many other systems. In this paper, a new method is presented to detect and extract the overall shape of one eye from image depending on two principles Helmholtz & Gestalt. According to the principle of perception by Helmholz, any observed geometric shape is perceptually "meaningful" if its repetition number is very small in image with random distribution. To achieve this goal, Gestalt Principle states that humans see things either through grouping its similar elements or recognize patterns. In general, according to Gestalt Principle, humans see things through genera
... Show MoreWe discussed the proper preparation, directing, and implementation of physical education lessons, and clarification of the duties that fall upon the physical education teacher in addition to his physical and skill duties, which is the duty of the physical education lesson. The problem of the research lies in the fact that interactive harmonic exercises are not implemented accurately by physical education teachers because they require great experience, exceptional efforts, and accuracy in performance. The research aims to identify the level of some physical and motor abilities and intelligence among students aged (9-10) years, and to know the effect of some harmonic exercises. Interactivity at the level of some physical and motor abi
... Show MoreInterface bonding between asphalt layers has been a topic of international investigation over the last thirty years. In this condition, a number of researchers have made their own techniques and used them to examine the characteristics of pavement interfaces. It is obvious that test findings won't always be comparable to the lack of a globally standard methodology for interface bonding. Also, several kinds of research have shown that factors like temperature, loading conditions, materials, and others have an impact on surface qualities. This study aims to solve this problem by thoroughly investigating interface bond testing that might serve as a basis for a uniform strategy. First, a general explanation of how the bonding strength
... Show MoreInterface bonding between asphalt layers has been a topic of international investigation over the last thirty years. In this condition, a number of researchers have made their own techniques and used them to examine the characteristics of pavement interfaces. It is obvious that test findings won't always be comparable to the lack of a globally standard methodology for interface bonding. Also, several kinds of research have shown that factors like temperature, loading conditions, materials, and others have an impact on surface qualities. This study aims to solve this problem by thoroughly investigating interface bond testing that might serve as a basis for a uniform strategy. First, a general explanation of how
... Show MoreMachine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed
... Show MoreNowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor
... Show More