This research introduces a developed analytical method to determine the nominal and maximum tensile stress and investigate the stress concentration factor. The required tooth fillets parametric equations and gears dimensions have been reformulated to take into account the asymmetric fillets radiuses, asymmetric pressure angle, and profile shifting non-standard modifications. An analytical technique has been developed for the determination of tooth weakest section location for standard, asymmetric fillet radiuses, asymmetric pressure angle and profile shifted involute helical and spur gears. Moreover, an analytical equation to evaluate gear tooth-loading angle at any radial distance on the involute profile of spur and helical gears, (taking into account the effect of profile shift factor) has been derived. In addition, numerical solution for the evaluation of the maximum fillet tensile stress and the combined tensile stress concentration factor for the verification of the analytical method using computer-aided engineering software (ANSYS Version 18.1). The analytical and FE result have been compared and found to be very close. The most effective method for reducing the stress concentration factor have been found by applying negative profile shifting on asymmetric tooth with lower unloaded pressure angle and high loaded pressure angle and fillet radius, which can lead to an enhancement percentage of (20%) when using a (35o/20o) asymmetric spur gear of a (24) teeth number with a shift factor of (-0.3mo) compared with standard (20o) one.
Cooling towers is one of the most important unit in industry, they are used to dispose heat from cooling media used in the integrated units. The choice of the cooling media plays recently an important rule due to fresh-water scarcity. The use of saline as a cooling media become of growing interest, but the corrosion problem has to be taken in consideration. In this study the simultaneous effect of cooling tower operation parameters on the corrosion rate of mild-steel is considered. The role of NaCl content is found to be pronounced more than the working solution temperature and flowrate. The corrosion of mild-steel in these studied factors had shown an interesting result especially with the NaCl% content. Firstly, there was an increase in t
... Show Morea porentioncsisteve has been carried out of the corrosion behavior of inconel(600) in chloride ions (Cl) over the tempreatures 293 over the temperatures 308K in both the dcacrated and the alloy
KE Sharquie, AA Noaimi, AG Al-Ghazzi, 2010 - Cited by 2
Pulsed laser ablation in liquid (PLAL) has become an increasingly important technique for metals production and metal oxides nanoparticles (NPs) and others. This technique has its many advantages compared with other conventional techniques (physical and chemical). This work was devoted for production of zirconia (ZrO2) nanoparticles via PLAL technique from a solid zirconium target immersed in a wet environment in order to study the effect of this environment on the optical properties and structure of ZrO2 nanoparticles. The solutions which used for this purpose is distilled water (D.W). The produces NPs were characterized by mean of many tests such as UV-visible (UV-Vis.), transmission electron microscope (TEM) and Z-Potential. The UV-Vis.
... Show MoreCoated sand (CS) filter media was investigated to remove phenol and 4-nitrophenol from aqueous solutions in batch experiments. Local sand was subjected to surface modification as impregnated with iron. The influence of process variables represented by solution pH value, contact time, initial concentration and adsorbent dosage on removal efficiency of phenol and 4-nitrophenol onto CS was studied. Batch studies were performed to evaluate the adsorption process, and it was found that the Langmuir isotherm effectively fits the experimental data for the adsorbates better than the Freundlich model with the CS highest adsorption capacity of 0.45 mg/g for 4-nitrophenol and 0.25 mg/g for phenol. The CS was found to adsorb 85% of 4-nitrophenol and
... Show MoreExtraction of copper (Cu) from aqueous solution utilizing Liquid Membrane technology (LM) is more effective than precipitation method that forms sludge and must be disposed of in landfills. In this work, we have formulated a liquid surfactant membrane (LSM) that uses kerosene oil as the main diluent of LSM to remove copper ions from the aqueous waste solution through di- (2-ethylhexyl) phosphoric acid - D2EHPA- as a carrier. This technique displays several advantages including one-stage extraction and stripping process, simple operation, low energy requirement, and. In this study, the LSM process was used to transport Cu (II) ions from the feed phase to the stripping phase, which was prepared, using H2SO4. For LSM p
... Show MoreIn this paper we use non-polynomial spline functions to develop numerical methods to approximate the solution of 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of these method, and to compare the computed results with other known methods.
The aim of this paper is to present a method for solving high order ordinary differential equations with two point's boundary condition, we propose semi-analytic technique using two-point oscillatory interpolation to construct polynomial solution. The original problem is concerned using two-point oscillatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by comparing with conventional methods.
In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth
... Show More