This research introduces a developed analytical method to determine the nominal and maximum tensile stress and investigate the stress concentration factor. The required tooth fillets parametric equations and gears dimensions have been reformulated to take into account the asymmetric fillets radiuses, asymmetric pressure angle, and profile shifting non-standard modifications. An analytical technique has been developed for the determination of tooth weakest section location for standard, asymmetric fillet radiuses, asymmetric pressure angle and profile shifted involute helical and spur gears. Moreover, an analytical equation to evaluate gear tooth-loading angle at any radial distance on the involute profile of spur and helical gears, (taking into account the effect of profile shift factor) has been derived. In addition, numerical solution for the evaluation of the maximum fillet tensile stress and the combined tensile stress concentration factor for the verification of the analytical method using computer-aided engineering software (ANSYS Version 18.1). The analytical and FE result have been compared and found to be very close. The most effective method for reducing the stress concentration factor have been found by applying negative profile shifting on asymmetric tooth with lower unloaded pressure angle and high loaded pressure angle and fillet radius, which can lead to an enhancement percentage of (20%) when using a (35o/20o) asymmetric spur gear of a (24) teeth number with a shift factor of (-0.3mo) compared with standard (20o) one.
Data-driven models perform poorly on part-of-speech tagging problems with the square Hmong language, a low-resource corpus. This paper designs a weight evaluation function to reduce the influence of unknown words. It proposes an improved harmony search algorithm utilizing the roulette and local evaluation strategies for handling the square Hmong part-of-speech tagging problem. The experiment shows that the average accuracy of the proposed model is 6%, 8% more than HMM and BiLSTM-CRF models, respectively. Meanwhile, the average F1 of the proposed model is also 6%, 3% more than HMM and BiLSTM-CRF models, respectively.
This paper presents designing an adaptive state feedback controller (ASFC) for a magnetic levitation system (MLS), which is an unstable system and has high nonlinearity and represents a challenging control problem. First, a nonadaptive state feedback controller (SFC) is designed by linearization about a selected equilibrium point and designing a SFC by pole-placement method to achieve maximum overshoot of 1.5% and settling time of 1s (5% criterion). When the operating point changes, the designed controller can no longer achieve the design specifications, since it is designed based on a linearization about a different operating point. This gives rise to utilizing the adaptive control scheme to parameterize the state feedback controll
... Show MoreFire is one of the most critical risks devastating to human life and property. Therefore, humans make different efforts to deal with fire hazards. Many techniques have been developed to assess fire safety risks. One of these methods is to predict the outbreak of a fire in buildings, and although it is hard to predict when a fire will start, it is critical to do so to safeguard human life and property. This research deals with evaluating the safety risks of the existing building in the city of Samawah/Iraq and determining the appropriateness of these buildings in terms of safety from fire hazards. Twelve parameters are certified based on the National Fire Protection Association (NFPA20
In aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show MoreIf feminist philosophy in the context of feminist research focuses on how to produce an alternative knowledge and culture for women and forming anew awareness of their roles in the face of prevailing misconceptions then the topic of Islamic feminism is presented as a philosophical topic in the field of human knowledge to discuss how to produce an alternative knowledge of traditional knowledge prevailing in patriarchal societies to restore the balance of power and authority in the relationship between the sexes to create an effective feminist role in advocating for and defending womenś issues to achieve this Islamic feminism sought to establish an Islamic epistemology .
Recently emerging pandemic SARS CoV-2 conquered our world since December 2019. Continuous efforts have been done to find out effective immunization and precise treatment stetratigies A way from therapeutic options that were tried in SARS CoV-2, an increased attention is directed to predict natural products and mainly phytochemicals as collaborative measures for this crisis. In this review, most of the mentioned compounds specially flavonoids (biacalin, hesperidin, quercetin, luteolin,, and phenolic (resveratrol, curcumin, and theaflavin) exert their effect through interfering with the action of one or more of this proteins (spike protein, papain like protease, 3 chymotrypsin like cysteine protease, and RNA dependent RNA
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show More