Experimental and numerical studies have been conducted for the effect of injected air bubbles on the heat transfer coefficient through the water flow in a vertical pipe under the influence of uniform heat flux. The investigated parameters were water flow rate of (10, 14 and 18) lit/min, air flow rate of (1.5, 3 and 4) lit/min for subjected heat fluxes of (27264, 36316 and 45398) W/m2. The energy, momentum and continuity equations were solved numerically to describe the motion of flow. Turbulence models k-ε was implemented. The mathematical model is using a CFD code Fluent (Ansys15). The water was used as continuous phase while the air was represented as dispersed. phase. The experimental work includes design, build and instrument a test rig for that purpose. A
circular vertical copper pipe test section of (length=0.7m, diameter= 0.05m, thickness= 1.5mm) is . designed and constructed, heated by an electrical heater fixed on its outer surface. Water . temperature at inlet is kept constant at (32°C). Water inlet and outlet temperatures, as well as radial temperature distribution within the pipe at seven sections along it between pipe surface and its center are measured. The results revealed that the secondary flow created by air bubbles have
significant effects on heat transfer enhancement and temperature profile. It is observed, that averaged Nusselt number enhancement for low heat flux of 27264 W/m2 and 4 lit/min air bubbles was 33.3 % and 23% in numerical and experimental, respectively.
A phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu
... Show MoreArtificial roughness on the absorber plate of a Solar Air Heater (SAH) is a popular technique for increasing its effective efficiency. The study investigated the effect of geometrical parameters of discrete multi-arc ribs (DMAR) installed below the SAH absorber plate on the effective efficiency. The effects of major roughness factors, such as number of gaps (Ng = 1-4), rib pitch (p/e = 4-16), rib height (e/D = 0.018-0.045), gab width (wg/e = 0.5-2), angle of attack ( = 30-75), and Reynolds number (Re= 2000-20000) on the performance of a SAH are studied. The performance of the SAH is evaluated using a top-down iterative technique. The results show that as Re rises, SAH-effective DMAR's efficiency first ascends to a specified value o
... Show MoreWhen the number of confirmed coronavirus disease cases rose in Iraq in the middle of February 2021, the Iraqi government performed a closure approach to constrain mobility and factory operations and enforce social distancing. In this research, the concentrations of air components (PM2.5, PM10, nitrogen dioxide (NO2) and ozone (O3)), which represent herein the degree of air quality index, were recorded, drawn and evaluated over central (Baghdad, the capital), northern (Kirkuk Province) and southern (Basra Province) Iraq before and during the closure. The experimental duration of this research was 6 months (from 1 January 2021 to 30 June 2021), which
... Show MoreSearch Results at the International Journal of Science and Research (IJSR)
Now-a-days the Flexible AC Transmission Systems (FACTS) technology is very effective in improving the power flow along the transmission lines and makes the power system more flexible and controllable. This paper deals with the most robust type of FACTS devices; it’s a Unified Power Flow Controller (UPFC). Many cases have been taken to study how the system behaves in the presence and absence of the UPFC under normal and contingency conditions. The UPFC is a device that can be used to improve the bus voltage, increasing the loadability of the line and reduce the active and reactive power losses in the transmission lines, through controlling the flow of real and reactive power. Both the magnitude and the phase angle of th
... Show MoreIn this research we solved numerically Boltzmann transport equation in order to calculate the transport parameters, such as, drift velocity, W, D/? (ratio of diffusion coefficient to the mobility) and momentum transfer collision frequency ?m, for purpose of determination of magnetic drift velocity WM and magnetic deflection coefficient ? for low energy electrons, that moves in the electric field E, crossed with magnetic field B, i.e; E×B, in the nitrogen, Argon, Helium and it's gases mixtures as a function of: E/N (ratio of electric field strength to the number density of gas), E/P300 (ratio of electric field strength to the gas pressure) and D/? which covered a different ranges for E/P300 at temperatures 300°k (Kelvin). The results show
... Show MoreExperiments have been conducted to study the local and average heat transfer by mixed
convection for hydrodynamically fully developed, thermally developing and fully developed
laminar upward air flow in an inclined annulus with adiabatic inner cast iron tube and uniform
heated outer aluminum tube with an aspect ratio ( Ω = 0.72) and (L/Dh≈40) for both calming and
test sections). A wide range of Reynolds number from 859 to 2024 has been covered, and heat
flux has been varied from 159 W/m2 to 812 W/m2 (these values of heat flux and Reynolds
number gave Richardson number range from 0.03 to 0.٣٨), with angles of annulus inclination
φ =0o (horizontal position), φ =60o (inclined position), and φ =90o (vertical posi