Preferred Language
Articles
/
joe-928
Numerical Study of Fluid Flow and Heat Transfer Characteristics in Solid and Perforated Finned Heat Sinks Utilizing a Piezoelectric Fan
...Show More Authors

Numerical study is adapted to combine between piezoelectric fan as a turbulent air flow generator and perforated finned heat sinks. A single piezoelectric fan with different tip amplitudes placed eccentrically at the duct entrance. The problem of solid and perforated finned heat sinks is solved and analyzed numerically by using Ansys 17.2 fluent, and solving three dimensional energy and Navier–Stokes equations that set with RNG based k−ε scalable wall function turbulent model. Finite volume algorithm is used to solve both phases of solid and fluid. Calculations are done for three values of piezoelectric fan amplitudes 25 mm, 30 mm, and 40 mm, respectively. Results of this numerical study are compared with previous both numerical and experimental studies and give a good agreement. Numerical solution is invoked to explain the behavior of air flow and temperature distribution for two types of circular axial and lateral perforations. For each type, all the results are compared with an identical solid finned heat sink. Perforations show a remarkable enhanced in the heat transfer characteristics. The results achieved enhancement in the heat transfer coefficient about 12% in axial perforation and 25% in the lateral perforation at the maximum fan amplitude.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 04 2013
Journal Name
1st Post – Graduate Students Conference, Alnahrain University / College Of Engineering
Convection Heat Transfer in Horizontal Annulus Porous Media with Rotating Outer Cylinder
...Show More Authors

A numerical investigation of mixed convection in a horizontal annulus filled with auniform fluid-saturated porous medium in the presence of internal heat generation is carried out.The inner cylinder is heated while the outer cylinder is cooled. The forced flow is induced by thecold outer cylinder rotating at a constant angular velocity. The flow field is modeled using ageneralized form of the momentum equation that accounts for the presence of porous mediumviscous, Darcian and inertial effects. Discretization of the governing equations is achieved usinga finite difference method. Comparisons with previous works are performed and the results showgood agreement. The effects of pertinent parameters such as the Richardson number and internalRay

... Show More
Publication Date
Mon Sep 01 2014
Journal Name
Al-khwarizmi Engineering Journal
Numerical Investigation of Transient Heat Conduction through a Thermal Insulation of Temperature Dependant Thermal Properties
...Show More Authors

The two-dimensional transient heat conduction through a thermal insulation of temperature dependent thermal properties is investigated numerically using the FVM. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner surface with a step change in temperature and subjected at its outer surface with a natural convection boundary condition associated with a periodic change in ambient temperature and heat flux of solar radiation. Two thermal insulation materials were selected. The fully implicit time scheme is selected to represent the time discretization. The arithmetic mean thermal conductivity is chosen to be the value of the approximated thermal conductivity at the i

... Show More
View Publication Preview PDF
Publication Date
Mon Nov 01 2021
Journal Name
Journal Of Engineering
Numerical Study for the Tube Rotation Effect on Melting Process in Shell and Tube Latent Heat Energy Storage LHES System
...Show More Authors

Although renewable energy systems have become an interesting global issue, it is not continuous either daily or seasonally. Latent heat energy storage (LHES) is one of the suitable solutions for this problem. LHES becomes a basic element in renewable energy systems. LHES compensate for the energy lack when these systems are at low production conditions. The present work considered a shell and tube LHES for numerical investigation of the tube rotation influence on the melting process. The simulation and calculations were carried out using ANSYS Fluent software. Paraffin wax represents the phase change material (PCM) in this work, while water was selected to be the heat transfer fluid (HTF). The calculations were carried o

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Thu May 31 2012
Journal Name
Al-khwarizmi Engineering Journal
An Experimental Study on the Effect of Shape and Location of Vortex Generators Ahead of a Heat Exchanger
...Show More Authors

An experimental study is carried out on the effect of vortex generators (Circular and square) on the flow and heat transfer at variable locations at (X = 0.5, 1.5, 2.5 cm) ahead of a heat exchanger with Reynolds number ranging from 62000< Re < 125000 and heat flux from 3000 ≤ q ≤ 8000 W/m2 .

In the experimental investigation, an apparatus is set up to measure the velocity and temperatures around the heat exchanger.                     

The results show that there is an effect for using vortex generators on heat transfer. Also, heat transfer depends on the shape and location. The circular is found t

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 28 2018
Journal Name
Al-khwarizmi Engineering Journal
Effect of Using Combined Square Nozzle & winglet with Helical Tape on Thermal Characteristics in Tube Heat Exchanger
...Show More Authors

Influence of combined square nozzle with helical tape inserted in a constant heat flux tube on heat transfer enhancement for turbulent airflow for Reynolds number ranging from 7000 to 14500 were investigated experimentally. Three different pitch ratios for square nozzle (PR = 5.8, 7.7 and 11.6) according to three different numbers of square nozzle (N = 3, 4 and 5) and constant pitch ratios for helical tape were used. The results observed that the Nusselt number and friction factor for combination with winglets were found to be up to 33.8 % and 21.4 %, respectively higher than nozzle alone for pitch ratio PR=5.8. The maximum value of thermal performance for using combination with winglets was about 1.351 for pitch ratio= 5.8. Nusselt numb

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Thermal Characteristics of Closed Wet Cooling Tower Using Different Heat Exchanger Tubes Arrangement
...Show More Authors

This paper presents thermal characteristics analysis of a modified Closed Wet Cooling Tower (CWCT) based on heat and mass transfer principles to improve the performance of this tower in Iraq. A prototype of CWCT optimized by added packing was designed, manufactured and tested for cooling capacity of 9 kW. Experiments are conducted to explore the effects of various operational and conformational parameters on the thermal performance. In the test section, spray water temperature and both dry bulb temperature and relative humidity of the air measured at intermediate points of the heat exchanger and packing. Heat exchangers consist of four rows and eight columns for an inline tubes arrangement and six rows and five columns f

... Show More
View Publication Preview PDF
Publication Date
Sat Jul 19 2025
Journal Name
Iraqi Journal Of Mechanical And Material Engineering
THE INFLUENCE OF FRICTION FACTOR ON THE COMBINED CONVECTIVE AND RADIATIVE HEAT TRANSFER IN A RECTANGULAR DUCT WITH INTERIOR CIRCULAR CORE
...Show More Authors

View Publication
Publication Date
Thu Mar 01 2018
Journal Name
Case Studies In Thermal Engineering
The temperatures distributions of a single-disc clutches using heat partitioning and total heat generated approaches
...Show More Authors

View Publication
Scopus (36)
Crossref (33)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2015
Journal Name
Journal Of Engineering
Study Effect of Central Rectangular Perforation on the Natural Convection Heat Transfer in an Inclined Heated Flat Plate
...Show More Authors

Anumerical solutions is presented to investigate the effect of inclination angle (θ) , perforation ratio (m) and wall temperature of the plate (Tw) on the heat transfer in natural convection from isothermal square flat plate up surface heated (with and without concentrated hole). The flat plate with dimensions of (128 mm) length × (64 mm) width has been used five with square models of the flat plate that gave a rectangular perforation of (m=0.03, 0.06, 0.13, 0.25, 0.5). The values of angle of inclination were (0o, 15o 30o 45o 60o) from horizontal position and the values of wall temperature (50oC, 60 oC, 70 oC, 90 oC, 100o<

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 30 2002
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Relationship Between Nusselt and Reynolds Number in Direct Contact Heat Transfer by Condensation of Light Hydrocarbons in Water
...Show More Authors

View Publication Preview PDF