Storage of rainwater within the root depth zone is one of the modern ways to increase plant production. Subsurface water retention technology was applied to assess improving values of crop yield and crop water use efficiency, applying a membrane made of low-density polyethylene trough installed below the crop root zone. The goal of this paper is to assess that the retention of rainwater above the membrane can improve the crop yield and crop water use efficiency values for winter wheat. The experiment was conducted in open field, within Joeybeh Township, located in east of the Ramadi City, in Anbar Province, in winter growing season 2018-2019. Two plots T1 (with membrane trough) and T2 (without membrane) were used for the comparison and cultivated with winter wheat, where the rainwater was only the source of irrigation. At the end of the harvest stage the obtained results of crop yield and crop water use efficiency for plots T1 and T2 were; 0.35 kg/m2 and 1.66 kg/m3, and 0.28 kg/m2 and 1.28 kg/m3, respectively. The increasing value of crop yield and crop water use efficiency in plot T1 was about 25 % and 30 %, respectively more than plot T2. Benefits of the installation of membrane trough are to keep soil moisture for longer times, prevent the cracks of the soil surface and reduce the deep percolation losses.
Abstract
An optoelectronic system for fog detection and visibility technique is presented .The idea of this research is based on the measurement of the atmospheric visibility by using an infrared beam emitter from LED diode. The optical scattering is used as a method to calculate the visibility. This method is applied at forward scattering within a foggy atmosphere, which is modern and has great importance for measuring visibility in seaports, airports, public roads and highways. In this paper we focus on the description of the system, principles of its operation and some results of field tests.
Keywords: fog sensor, visibility sensor, backscattering, forward scattering.
This paper proposes a novel method for generating True Random Numbers (TRNs) using electromechanical switches. The proposed generator is implemented using an FPGA board. The system utilizes the phenomenon of electromechanical switch bounce to produce a randomly fluctuated signal that is used to trigger a counter to generate a binary random number. Compared to other true random number generation methods, the proposed approach features a high degree of randomness using a simple circuit that can be easily built using off-the-shelf components. The proposed system is implemented using a commercial relay circuit connected to an FPGA board that is used to process and record the generated random sequences. Applying statistical testing on the exp
... Show Morein this paper the collocation method will be solve ordinary differential equations of retarted arguments also some examples are presented in order to illustrate this approach
In this paper Volterra Runge-Kutta methods which include: method of order two and four will be applied to general nonlinear Volterra integral equations of the second kind. Moreover we study the convergent of the algorithms of Volterra Runge-Kutta methods. Finally, programs for each method are written in MATLAB language and a comparison between the two types has been made depending on the least square errors.
* Khalifa E. Sharquie1, Hayder Al-Hamamy2, Adil A. Noaimi1, Mohammed A. Al-Marsomy3, Husam Ali Salman4, American Journal of Dermatology and Venereology, 2014 - Cited by 2
Signal denoising is directly related to sample estimation of received signals, either by estimating the equation parameters for the target reflections or the surrounding noise and clutter accompanying the data of interest. Radar signals recorded using analogue or digital devices are not immune to noise. Random or white noise with no coherency is mainly produced in the form of random electrons, and caused by heat, environment, and stray circuitry loses. These factors influence the output signal voltage, thus creating detectable noise. Differential Evolution (DE) is an effectual, competent, and robust optimisation method used to solve different problems in the engineering and scientific domains, such as in signal processing. This paper looks
... Show MoreIn this research estimated the parameters of Gumbel distribution Type 1 for Maximum values through the use of two estimation methods:- Moments (MoM) and Modification Moments(MM) Method. the Simulation used for comparison between each of the estimation methods to reach the best method to estimate the parameters where the simulation was to generate random data follow Gumbel distributiondepending on three models of the real values of the parameters for different sample sizes with samples of replicate (R=500).The results of the assessment were put in tables prepared for the purpose of comparison, which made depending on the mean squares error (MSE).
Samples (4th) reviewed are deposited and stored in the Iraqi Natural History Museum (INHM), and there are 4th of them. Sciurus anomalous (Güldenstädt, 1785) species are preserved and mummified. It is a Caucasian squirrel (S. anomalus) that was medium in size, with a grayish-to-chestnut color, a golden gray back, and a golden tail. It is found in the forests of East and Southeast Asia. The variety possessed for the study was previously registered in the vertebrate literature by several authors and was stored by scientific methods in the museum. As a result of the multiplication and growth of these species, and to know the environmental changes that occurred in them, they were compared with models and samples found throughout Iraq
... Show More