Piled raft is commonly used as foundation for high rise buildings. The design concept of piled raft foundation is to minimize the number of piles, and to utilize the entire bearing capacity. High axial stresses are therefore, concentrated at the region of connection between the piles and raft. Recently, an alternative technique is proposed to disconnect the piles from the raft in a so called unconnected piled raft (UCPR) foundation, in which a compacted soil layer (cushion) beneath the raft, is usually introduced. The piles of the new system are considered as reinforcement members for the subsoil rather than as structural members. In the current study, the behavior of unconnected piled rafts systems has been studied numerically by means of 3D Finite Element analysis via ABAQUS software. The numerical analysis was carried out to investigate the effect of thickness and stiffness of the cushion, pile length, stiffness of foundation soil, and stiffness of bearing soil on the performance of the unconnected piled raft. The results indicate that when unconnected piles are used, the axial stress along the pile is significantly reduced e.g. the axial stress at head of unconnected pile is decreased by 37.8% compared with that related to connected pile. It is also found that the stiffness and thickness of the cushion, and stiffness of foundation soil have considerable role on reduction the settlement.
Semantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po
In this study, a fast block matching search algorithm based on blocks' descriptors and multilevel blocks filtering is introduced. The used descriptors are the mean and a set of centralized low order moments. Hierarchal filtering and MAE similarity measure were adopted to nominate the best similar blocks lay within the pool of neighbor blocks. As next step to blocks nomination the similarity of the mean and moments is used to classify the nominated blocks and put them in one of three sub-pools, each one represents certain nomination priority level (i.e., most, less & least level). The main reason of the introducing nomination and classification steps is a significant reduction in the number of matching instances of the pixels belong to the c
... Show MoreIn the present work, pattern recognition is carried out by the contrast and relative variance of clouds. The K-mean clustering process is then applied to classify the cloud type; also, texture analysis being adopted to extract the textural features and using them in cloud classification process. The test image used in the classification process is the Meteosat-7 image for the D3 region.The K-mean method is adopted as an unsupervised classification. This method depends on the initial chosen seeds of cluster. Since, the initial seeds are chosen randomly, the user supply a set of means, or cluster centers in the n-dimensional space.The K-mean cluster has been applied on two bands (IR2 band) and (water vapour band).The textural analysis is used
... Show MoreIn this paper, we will present proposed enhance process of image compression by using RLE algorithm. This proposed yield to decrease the size of compressing image, but the original method used primarily for compressing a binary images [1].Which will yield increasing the size of an original image mostly when used for color images. The test of an enhanced algorithm is performed on sample consists of ten BMP 24-bit true color images, building an application by using visual basic 6.0 to show the size after and before compression process and computing the compression ratio for RLE and for the enhanced RLE algorithm.
Surveillance cameras are video cameras used for the purpose of observing an area. They are often connected to a recording device or IP network, and may be watched by a security guard or law enforcement officer. In case of location have less percentage of movement (like home courtyard during night); then we need to check whole recorded video to show where and when that motion occur which are wasting in time. So this paper aims at processing the real time video captured by a Webcam to detect motion in the Scene using MATLAB 2012a, with keeping in mind that camera still recorded which means real time detection. The results show accuracy and efficiency in detecting motion
The development of analytical techniques is required for the accurate and comprehensive detection and measurement of antibiotic contamination in the environment. Metronidazole is a common antibacterial, antiprotozoal, and antibiotic drug. Thiamine is a vital biological and medicinal ingredient that is involved in the metabolism of proteins, fats, and carbohydrates that produce energy. The study aims to identify the drugs in a mixture without separation to provide more information to confirm if a drug is present in a combination. Metronidazole and thiamine are two examples of pharmaceutical and environmental samples that can be identified using spectrophotometric techniques because of their low cost and simplicity of use. The operati
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show More