Piled raft is commonly used as foundation for high rise buildings. The design concept of piled raft foundation is to minimize the number of piles, and to utilize the entire bearing capacity. High axial stresses are therefore, concentrated at the region of connection between the piles and raft. Recently, an alternative technique is proposed to disconnect the piles from the raft in a so called unconnected piled raft (UCPR) foundation, in which a compacted soil layer (cushion) beneath the raft, is usually introduced. The piles of the new system are considered as reinforcement members for the subsoil rather than as structural members. In the current study, the behavior of unconnected piled rafts systems has been studied numerically by means of 3D Finite Element analysis via ABAQUS software. The numerical analysis was carried out to investigate the effect of thickness and stiffness of the cushion, pile length, stiffness of foundation soil, and stiffness of bearing soil on the performance of the unconnected piled raft. The results indicate that when unconnected piles are used, the axial stress along the pile is significantly reduced e.g. the axial stress at head of unconnected pile is decreased by 37.8% compared with that related to connected pile. It is also found that the stiffness and thickness of the cushion, and stiffness of foundation soil have considerable role on reduction the settlement.
The vast advantages of 3D modelling industry have urged competitors to improve capturing techniques and processing pipelines towards minimizing labour requirements, saving time and reducing project risk. When it comes to digital 3D documentary and conserving projects, laser scanning and photogrammetry are compared to choose between the two. Since both techniques have pros and cons, this paper approaches the potential issues of individual techniques in terms of time, budget, accuracy, density, methodology and ease to use. Terrestrial laser scanner and close-range photogrammetry are tested to document a unique invaluable artefact (Lady of Hatra) located in Iraq for future data fusion sc
In the geotechnical engineering applications, precise understandings are yet to be established on the effects of a foundation stiffness on its bearing capacity and settlement. The modern foundation construction uses the new available construction materials that totally change the relative stiffness of the footing structures-soil interactions such as waste material and landfill area of more residential purposes. Conventional bearing capacity equations were dealt with common rigid footing and thus cannot be used for reduced foundation rigidity. Therefore, this study investigates the effects of foundation relative stiffness on its load-displacement behaviour and the soil deformation field using compression test of a strip smooth footings on su
... Show MorePublic relations have become vital functions in modern institutions in the complex business world. They play an important role in facilitating the process of communication between the institution and its audiences and achieve mutual understanding between the parties as public relations play this important role based on research and analysis, policy formulation and programming programs and communication with the public.
The significance of this research comes from the challenges faced by public relations in state institutions. Misunderstandings and ambiguities still plague most workers in this field, especially in defining the concept, objectives and basic functions of public rela
... Show MoreMilling process is a common machining operation that is used in the manufacturing of complex surfaces. Machining-induced residual stresses (RS) have a great impact on the performance of machined components and the surface quality in face milling operations with parameter cutting. The properties of engineering material as well as structural components, specifically fatigue life, deformation, impact resistance, corrosion resistance, and brittle fracture, can all be significantly influenced by residual stresses. Accordingly, controlling the distribution of residual stresses is indeed important to protect the piece and avoid failure. Most of the previous works inspected the material properties, tool parameters, or cutting parameters, bu
... Show MoreIn this paper , concrete micro-piles were used to improve the bearing capacity of the soil which is supporting the shallow foundation by using groups of (4; 6 and 9)bored short micro-piles which have, (D=0.125m and D=0.1m), and length to diameter ratio (L/D) equal to (6; 10 and 12) respectively. To calculate the bearing capacity of the micro-piles,(Tomlinson) and (Lamda) methods were used; also the soil properties were taken from Al-Muthana airport,(Al-Qyssi,2001) [1]. The results show that; increasing the number of piles and/ or the diameters and lengths; and the interaction between the bearing capacity of the shallow foundation with the bearing capacity of the pile group which leads to increasing the strength against the external loads
... Show MoreHeat transfer process and fluid flow in a solar chimney used for natural ventilation are investigated numerically in the present work. Solar chimney was tested by selecting different positions of absorber namely: at the back side, front side, and at the middle of the air gap. CFD analysis based on finite volume method is used to predict the thermal performance, and air flow in two dimensional solar chimney under unsteady state condition, to identify the effect of different parameters such as solar radiation. Results show that a solar chimney with absorber at the middle of the air gap gives better ventilation performance. A comparison between the numerical and previous experimental results shows fair agreement.
In this paper, we describe the cases of marriage and divorce in the city of Baghdad on both sides of Rusafa and Karkh, we collected the data in this research from the Supreme Judicial Council and used the cubic spline interpolation method to estimate the function that passing through given points as well as the extrapolation method which was applied for estimating the cases of marriage and divorce for the next year and comparison between Rusafa and Karkh by using the MATLAB program.
In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.
A new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented method was given and the applicability was proved by some numerical examples. The results obtained in this method are compared with other known results.
A long-span Prestressed Concrete Hunched Beam with Multi-Opening has been developed as an alternative to steel structural elements. The commercial finite element package ABAQUS/CAE version 2019 has been utilized. This article has presented the results of three-dimensional numerical simulations investigating the flexural behaviour of existing experimental work of supported Prestressed Concrete Hunched Beams with multiple openings of varying shapes under static monotonic loads. Insertion openings in such a beam lead to concentrate stresses at the corners of these openings; as a result, extensive cracking would appear. Correlation between numerical models and empirical work has also been discussed regarding load displacemen
... Show More