This work deals with the production of light fuel cuts of (gasoline, kerosene and gas oil) by catalytic cracking treatment of secondary product mater (heavy vacuum gas oil) which was produced from the vacuum distillation unit in any petroleum refinery. The objective of this research was to study the effect of the catalyst -to- oil ratio parameter on catalytic cracking process of heavy vacuum gas oil feed at constant temperature (450 °C). The first step of this treatment was, catalytic cracking of this material by constructed batch reactor occupied with auxiliary control devices, at selective range of the catalyst –to- oil ratio parameter ( 2, 2.5, 3 and 3.5) respectively. The conversion of heavy vacuum gas oil which was obtained, reaches to (50, 70, 75 and 80) % for (2, 2.5, 3 and 3.5 catalysts -to- oil ratio parameter respectively. The second step for this study was distillation of this cracking heavy vacuum gas oil liquid by atmospheric distillation device for these several catalyst -to- oil ratio parameter, according to obtained light fuel cuts (gasoline, kerosene and gas oil). The percentage volume of light fractions at various COR are (7, 25 and 18) for COR 2, (10, 20 and 40) for COR 2.5, (10, 30 and 35) for COR 3 and (15, 30 and 35) for COR 3.5 which separates according to its boiling point. The light cuts were distilled by atmospheric distillation device in order to obtained distillation curve. The third step was study the major physical and chemical properties for feed (heavy vacuum gas oil) and catalytic cracking liquid of HVGO at various COR with its light fuel fractions, the results refers to acceptable properties compared with other commercial properties.
Zinc oxide thin films were deposited by chemical spray pyrolysis onto glass substrates which are held at a temperature of 673 K. Some structural, electrical, optical and gas sensing properties of films were studied. The resistance of ZnO thin film exhibits a change of magnitude as the ambient gas is cycled from air to oxygen and nitrogen dioxide
Background: Vibration decreases the viscosity of composite, making it flow and readily fit the walls of the cavity. This study is initiated to see how this improved adaptation of the composite resin to the cavity walls will affect microleakage using different curing modes
Materials and methods: Standard Class V cavities were prepared on the buccal surface of sixty extracted premolars. Teeth were randomly assigned into two groups (n=30) according to the composite condensation (vibration and conventional) technique, then subdivided into three subgroups (n=10) according to light curing modes (LED-Ramp, LED-Fast and Halogen Continuous modes). Cavities were etched and bonded with Single Bond Universal
... Show MoreBackground: Adjustment of any premature occlusal contact of any zirconia restoration requires its polishing or glazing in order to restore the smoothness of the restoration. The objective of this in vitro study was to evaluate the effects of different polishing systems and glazing on the surface roughness of full-contour zirconia. Material and methods: Forty disks (diameter: 8 mm, thickness: 6.4 mm) were prepared from pre-sintered full-contoured zirconia block; they were colored and sintered in a high-temperature furnace at 1500ËšC for 8 hours. The specimens were then leveled and finished using grinding and polishing machine and adjusted using diamond disk. The specimens were then randomly divided into four groups (n=10), group I involves
... Show MoreThe purpose of this study is designate quenching and tempering heat treatment by using Taguchi technique to determine optimal factors of heat treatment (austenitizing temperature, percentage of nanoparticles, type of base media, nanoparticles type and soaking time) for increasing hardness, wear rate and impact energy properties of 420 martensitic stainless steel. An (L18) orthogonal array was chosen for the design of experiment. The optimum process parameters were determined by using signal-to-noise ratio (larger is better) criterion for hardness and impact energy while (Smaller is better) criterion was for the wear rate. The importance levels of process parameters that effect on hardness, wear rate and impact energy propertie
... Show MoreIn this work, magnesium aluminate spinel (MA) (MgO 28 wt%, Al2O3 72 wt%) stoichiometric compound , were synthesized via solid state reaction (SSR) Single firing stage, and the impact of sintering on the physical properties and thermal properties as well as the fine structure and morphology of the ceramic product were examined. The Spinel samples were pressed at of (14 MPa) and sintering soaking time (2h). The effect of adding oxide titania (TiO2) was studied. The obtained powders were calcined at a temperature range of 1200 and 1400 °C. The calcined samples spinel were characterized by XRD, it showed the presence of developed spinel phase end also showed that the best catalyst is titania. The SEM image showed the high sintering temperat
... Show MoreAn isolate of Leishmania major was grown on the semisolid medium and incubated at 26ºC. The isolate was irradiated by He: Ne laser (632.8 nm, 10 mW) at exposure times (5, 10, 15, 20, 25, 30) minutes in their respective order. The unirradiated groups represent control group. Growth rate and percentage of viability were examined during six days after irradiation. The change in these two parameters reflects the effect of irradiation on the parasite. The results refers that the general growth effected by irradiation in comparison with un irradiation group, The growth rate of parasite decrease with increasing the exposure time in comparison with control group. Parasite viability decrease with irradiation and the percentage of living cell dec
... Show MoreRoller-Compacted Concrete (RCC) is a zero-slump concrete, with no forms, no reinforcing steel, no finishing and is wet enough to support compaction by vibratory rollers. Because the effectiveness of curing on properties and durability, the primary scope of this research is to study the effect of various curing methods (air curing, emulsified asphalt(flan coat) curing, 7 days water curing and permanent water curing) and different porcelanite (local material used as an Internal Curing agent) replacement percentages (volumetric replacement) of fine aggregate on some properties of RCC and to explore the possibility of introducing more practical RCC for road pavement with minimum requirement of curing. Cubes specimens were sawed from the slab
... Show MoreThe aim of this study was to evaluate tensile properties of low and medium carbon ferrite -martensite dual phase steel, and the effect cryogenic treatment at liquid nitrogen temperature (-196 ºC) on its properties. Low carbon steel (C12D) and medium carbon steels (C32D & C42D) were used in this work. For each steel grade, five groups of specimens were prepared according to the type of heat treatment. The first group was normalized, the second group was normalized and subsequently subjected to cryogenic treatment then tempered at (200 ºC) for one hour, the third group was quenched from intercritical annealing temperature of (760 ºC) to obtain dual phase (DP) steel, the fourth and fifth groups were both quenched from (760 ºC), but
... Show MoreThis study has been conducted to examin the effect of sodium propionate at different level of 0.03,0.06,0.10% on the number of bacteria and mold and to extend the storage life of laboratory processed biscuit. The results indicated that the use of 0.10% sodium propionate prolonged the storage peroid until the third month, while the use of 0.20% sodium propionate showed no growth of bacteria up to six month of storage, three types of bacteria has been isolated from processed biscuit, namely, Staphylococcus aureus, Bacillus cereus, Esherichia coli. using 0.10% sodium propionate showed no growth of mold up to three month of storage ,while using of 0.15 % and 0.20% sodium propionate prevent the growth
... Show More