Preferred Language
Articles
/
joe-898
Semi-Analytical Prediction of Flank Tool Wear in Orthogonal Cutting of Aluminum
...Show More Authors

This study aims to model the flank wear prediction equation in metal cutting, depending on the workpiece material properties and almost cutting conditions. A new method of energy transferred solution between the cutting tool and workpiece was introduced through the flow stress of chip formation by using the Johnson-Cook model. To investigate this model, an orthogonal cutting test coupled with finite element analysis was carried out to solve this model and finding a wear coefficient of cutting 6061-T6 aluminum and the given carbide tool.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Proceedings Of International Conference On Computing And Communication Networks
Automatic Health Speech Prediction System Using Support Vector Machine
...Show More Authors

View Publication
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Thu May 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Channel Estimation and Prediction Based Adaptive Wireless Communication Systems
...Show More Authors

Wireless channels are typically much more noisy than wired links and subjected to fading due to multipath  propagation which result in ISI and hence high error rate. Adaptive modulation is a powerful technique to improve the tradeoff between spectral efficiency and Bit Error Rate (BER). In order to adjust the transmission rate, channel state information (CSI) is required at the transmitter side.

In this paper the performance enhancement of using linear prediction along with channel estimation to track the channel variations and adaptive modulation were examined. The simulation results shows that the channel estimation is sufficient for low Doppler frequency shifts (<30 Hz), while channel prediction is much more suited at

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 30 2024
Journal Name
Iraqi Journal Of Science
Attention-Deficit Hyperactivity Disorder Prediction by Artificial Intelligence Techniques
...Show More Authors

Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sat Aug 01 2015
Journal Name
International Journal Of Computer Science And Mobile Computing
Image Compression based on Non-Linear Polynomial Prediction Model
...Show More Authors

Publication Date
Wed Feb 01 2023
Journal Name
Journal Of Engineering
Vertical Stress Prediction for Zubair Oil Field/ Case Study
...Show More Authors

Predicting vertical stress was indeed useful for controlling geomechanical issues since it allowed for the computation of pore pressure for the formation and the classification of fault regimes. This study provides an in-depth observation of vertical stress prediction utilizing numerous approaches using the Techlog 2015 software. Gardner's method results in incorrect vertical stress values with a problem that this method doesn't start from the surface and instead relies only on sound log data. Whereas the Amoco, Wendt non-acoustic, Traugott, average technique simply needed density log as input and used a straight line as the observed density, this was incorrect for vertical computing stress. The results of these methods

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jun 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Correlation for fitting multicomponent vapor-liquid equilibria data and prediction of azeotropic behavior
...Show More Authors

Correlation equations for expressing the boiling temperature as direct function of liquid composition have been tested successfully and applied for predicting azeotropic behavior of multicomponent mixtures and the kind of azeotrope (minimum, maximum and saddle type) using modified correlation of Gibbs-Konovalov theorem. Also, the binary and ternary azeotropic point have been detected experimentally using graphical determination on the basis of experimental binary and ternary vapor-liquid equilibrium data.

            In this study, isobaric vapor-liquid equilibrium for two ternary systems: “1-Propanol – Hexane – Benzene” and its binaries “1-Propanol –

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
A Viscoplastic Modeling for Permanent Deformation Prediction of Rubberized and Conventional Mix Asphalt
...Show More Authors

View Publication
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Advances In Science And Technology Research Journal
Experimental Investigation and Fuzzy Based Prediction of Titanium Alloy Performance During Drilling Process
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Efficiency Prediction and Performance Characterization of Photovoltaic Solar Panel at Baghdad Climate Conditions
...Show More Authors

The performance of a solar cell under sun radiation is necessary to describe the electrical parameters of the cell. The Prova 200 solar panel analyzer is used for the professional testing of four solar cells at Baghdad climate conditions. Voltage -current characteristics of different area solar cells operated under solar irradiation for testing their quality and determining the optimal operational parameters for maximum electrical output were obtained. A correlation is developed between solar cell efficiency h and the corresponding solar cell parameters; solar irradiance G, maximum power Pmax, and production date P. The average absolute error of the proposed correlation is 5.5% for 40 data points. The results also show th

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
International Journal Of Advanced Research In Computer Science And Software Engineering
Medical Image Compression using Wavelet Quadrants of Polynomial Prediction Coding & Bit Plane Slicing
...Show More Authors