Preferred Language
Articles
/
joe-895
Flexural Behavior of Fiber Reinforced Self-Compacting Rubberized Concrete Beams
...Show More Authors

The massive growth of the automotive industry and the development of vehicles use lead to produce a huge amount of waste tire rubber. Rubber tires are non-biodegradable, resulting in environmental problems such as fire risks. In this search, the flexural behavior of steel fiber reinforced self-compacting concrete (SFRSCC) beams containing different percentages and sizes of waste tire rubbers were studied and compared them with the flexural behavior of SCC and SFRSCC. Micro steel fiber (straight type) with aspect ratio 65 was used in mixes. The replacement of coarse and fine aggregate was 20% and 10% with chip and crumb rubber. Also, the replacement of limestone dust and silica fume was 50%, 25%, and 12% with ground rubber and very fine rubber, respectively. Twelve beams with small-scale (L=1100mm, h = 150mm, b =100mm) were tested under two points loading (monotonic loading). Fresh properties, hardened properties, load-deflection relation, first crack load, ultimate load, and crack width were investigated. Two tested reinforced concrete beams from experimental work were selected as a case study to compare with the results from ABAQUS program (monotonic loading). These two reinforced concrete beams were simulated as a parametric study under repeated loading using this finite element program. The results showed that the flexural behavior of SFRSCC beams containing rubber was acceptable when compared with flexural behavior of SCC and SFRSCC beams (depended on load carrying capacity). Cracks width was decreased with the addition of steel fibers and waste tires rubber.  An acceptable agreement can be shown between the results of numerical analysis and the results obtained from experimental test (monotonic loading). Insignificant ultimate load differences between the results of monotonic loading and repeated loading                                                                                                                                       

                                                   

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Feb 02 2019
Journal Name
Journal Of Engineering Sciences And Technology
Partially Prestressed Concrete Beams under Limited Cycles of Repeated Loading
...Show More Authors

View Publication
Publication Date
Thu Dec 01 2022
Journal Name
Civil And Environmental Engineering
Performance of Prestressed Concrete Hunched Beams with Multi-Quadrilaterals Openings
...Show More Authors
Abstract<p>A long-span Prestressed Concrete Hunched Beam with Multi-Quadrilateral Opening has been developed as an alternative to steel structural elements. An experimental program was created and evaluated utilizing a single mid-span monotonic static load on simply supported beams, which included six beams with openings and the solid control beam without openings, to investigate the performance of such beams. The number and height of the quadrilateral openings are the variables to consider. According to test results, the presence of openings in the prestressed concrete hunched beam with multi-quadrilateral opening did not considerably affect their ultimate load capacity with respect to a contro</p> ... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Journal Of Engineering
3D- ABAQUS Modelling of Prestressed Concrete Hunched Beams with Multi-Openings of Different Shapes
...Show More Authors

A long-span Prestressed Concrete Hunched Beam with Multi-Opening has been developed as an alternative to steel structural elements. The commercial finite element package ABAQUS/CAE version 2019 has been utilized. This article has presented the results of three-dimensional numerical simulations investigating the flexural behaviour of existing experimental work of supported Prestressed Concrete Hunched Beams with multiple openings of varying shapes under static monotonic loads. Insertion openings in such a beam lead to concentrate stresses at the corners of these openings; as a result, extensive cracking would appear. Correlation between numerical models and empirical work has also been discussed regarding load displacemen

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Overview of seismic performance assessment of reinforced concrete buildings
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Jan 11 2021
Journal Name
Engineering, Technology & Applied Science Research
Impact Resistance of Bendable Concrete Reinforced with Grids and Containing PVA Solution
...Show More Authors

The development of new building materials, able of absorbing more energy is an active research area. Engineering Cementitious Composite (ECC) is a class of super-elastic fiberreinforced cement composites characterized by high ductility and tight crack width control. The use of bendable concrete produced from Portland Limestone Cement (PLC) may lead to an interest in new concrete mixes. Impact results of bendable concrete reinforced with steel mesh and polymer fibers will provide data for the use of this concrete in areas subject to impact loading. The experimental part consisted of compressive strength and impact resistance tests along with a result comparison with unreinforced concrete. Concrete samples, with dimensions of 100×

... Show More
Publication Date
Mon Jun 27 2022
Journal Name
Materials
Flexural Performance of Encased Pultruded GFRP I-Beam with High Strength Concrete under Static Loading
...Show More Authors

There is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP

... Show More
Scopus (12)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Fri May 01 2020
Journal Name
International Journal Of Geomate
METHODOLOGY FOR MONITORING THE FLEXURAL BEHAV-IOR OF STRUCTURAL CONCRETE MEMBERS WITH UNBONDED INTERNAL STEEL
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Aug 07 2022
Journal Name
Engineering, Technology & Applied Science Research Etasr
Flexural Strengthening of Prestressed Girders with Partially Damaged Strands Using Enhancement of Carbon Fiber Laminates by End Sheet Anchorages
...Show More Authors

This paper examines the impact of flexural strengthening on the percentage of damaged strands in internally unbonded tendons in partially prestressed concrete beams (0, 14.28%, and 28.57%) and the recovering conditions using CFRP composite longitudinal laminates at the soffit, and end anchorage U-wrap sheets to restore the original flexural capacity and mitigate the delamination of the soffit of longitudinal Carbon Fiber Reinforced Polymer (CFRP) laminates. The composition of the laminates and anchors affected the stress of the CFRP, the failure mode, and thus the behavior of the beam. The experimental results revealed that the usage of CFRP laminates has a considerable impact on strand strain, particularly when anchors are employed

... Show More
Crossref (10)
Crossref
Publication Date
Wed May 01 2019
Journal Name
Iop Conference Series: Materials Science And Engineering
Effect of sustainable palm fiber on high strength concrete properties
...Show More Authors
Abstract<p>Date palm fiber is one of the common wastes available in the M. E. countries essentially Iraq. The aim of search to investigate the performance and effects of fiber date palm on the mechanical properties of high strength concrete, this fiber was used in three ratio 2, 4 and 6 % by vol. of concrete at ages of (7, 28, 90) days. Results demonstrated improvement in the compressive strength increased 19.2 %, 23.6%, 24.9 % for 2%, 4%, 6% of fiber respectively at age 28 days. Flexural strength increases 47.6%, 66.2%, 93.8% form (2,4,6) % of fiber respectively at age 28 days. Density increase about 0.41%, 0, 61 % 0.69 % for (2,4,6) % of fiber respectively at age 28. Absorption water decrease </p> ... Show More
View Publication
Crossref (6)
Crossref
Publication Date
Fri Aug 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Empirical Equations for Analysis of Two-Way Reinforced Concrete Slabs
...Show More Authors

There are many different methods for analysis of two-way reinforced concrete slabs. The most efficient methods depend on using certain factors given in different codes of reinforced concrete design. The other ways of analysis of two-way slabs are the direct design method and the equivalent frame method. But these methods usually need a long time for analysis of the slabs.

In this paper, a new simple method has been developed to analyze the two-way slabs by using simple empirical formulae, and the results of final analysis of some examples have been compared with other different methods given in different codes of practice.

The comparison proof that this simple proposed method gives good results and it can be used in analy

... Show More
View Publication Preview PDF