Preferred Language
Articles
/
joe-890
Moisture Damage of Warm Mix Asphalt Concrete
...Show More Authors

Implementation of Warm Mix Asphalt concrete (WMA) is getting global acceptance due to the restrictions for protecting the environment and the requirements to reduce fuel consumption. In this investigation, two WMA mixtures have been prepared in the laboratory using medium curing cutback (MC-30) and Cationic emulsion asphalt. Hot Mix Asphalt (HMA) was also prepared for comparison. The cylinder specimens (63.5mm) in height and (101.6mm) in diameter were constructed from the mixtures and subjected to indirect tensile strength test to determine the Tensile Strength Ratio (TSR). The cylinder specimens of (101.6mm) in height and (101.6mm) in diameter were also constructed from those mixtures and subjected to static compressive strength test to determine the Index of Retained Strength (IRS). It was concluded that the WMA are more prone to moisture damage than HMA, the TSR are (92 and 86) % for (emulsion and cutback) WMA respectively, both are lower than of HMA by (2.13 and 8.51) % respectively. As the asphalt content increases, the TSR also increases and reached to peak value of Optimum Asphalt Content (OAC) then decreases. The WMA has less IRS than HMA, the IRS are 70% and 78% for the WMA-emulsified asphalt and HMA respectively.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Feb 21 2022
Journal Name
Applied Sciences
The Behavior of Hybrid Fiber-Reinforced Concrete Elements: A New Stress-Strain Model Using an Evolutionary Approach
...Show More Authors

Several stress-strain models were used to predict the strengths of steel fiber reinforced concrete, which are distinctive of the material. However, insufficient research has been done on the influence of hybrid fiber combinations (comprising two or more distinct fibers) on the characteristics of concrete. For this reason, the researchers conducted an experimental program to determine the stress-strain relationship of 30 concrete samples reinforced with two distinct fibers (a hybrid of polyvinyl alcohol and steel fibers), with compressive strengths ranging from 40 to 120 MPa. A total of 80% of the experimental results were used to develop a new empirical stress-strain model, which was accomplished through the application of the parti

... Show More
Scopus (32)
Crossref (31)
Scopus Clarivate Crossref
Publication Date
Mon Mar 18 2019
Journal Name
Civil Engineering Journal
Circularization Technique for Strengthening of Plain Concrete Short Square Columns Subjected to a Uniaxial Compression Compressive Pressure
...Show More Authors

This paper presents an experimental study for strengthening existing columns against axial compressive loads. The objective of this work is to study the behavior of concrete square columns strengthening with circulation technique. In Iraq, there are significantly more reinforced rectangular and square columns than reinforced circular columns in reinforced concrete buildings. Moreover, early research studies indicated that strengthening of rectangular or square columns using wraps of CFRP (Carbon Fiber Reinforced Polymer) provided rather little enhancement to their load-carrying capacity. In this paper, shape modification technique was performed to modify the shape (cross section) of the columns from square columns into circular colu

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Tue Oct 15 2024
Journal Name
Civileng
Structural Performance of a Hollow-Core Square Concrete Column Longitudinally Reinforced with GFRP Bars under Concentric Load
...Show More Authors

Concrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Materials Science Forum
The Feasibility of Using Micro Silica Sand Powder as Partial Replacement of Cement in Production of Roller Compacted Concrete
...Show More Authors

Roller compacted concrete (RCC) is a special type of concrete with zero or even negative slump consistency. In this work, it had aimed to produce an RCC mix suitable for roads paving with minimum cost and better engineering properties so, different RCC mixes had prepared i.e. (M1, M2, M3, and M4) using specified percentages of micro natural silica sand powder (SSP) as partial replacement of (0%, 5%, 10%, and 20%) by weight of sulfate resistant Portland cement. Additionally, M-sand, crushed stone, filler, and water had been used. The results had obtained after 28 days of water curing. The control mix (M1) had satisfied the required f ‘c with accepted results for the other tests. M2 mix with SSP of 5% had

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Key Engineering Materials
Compressive Strength Performance of Reactive Powder Concrete Using Different Types of Materials as a Partial Replacement of Fine Aggregate
...Show More Authors

Reactive Powder Concrete (RPC) can be incorporate as a one of the most important and progressive concrete technology. It is a special type of ultra-high strength concrete (UHSC) that’s exclude the coarse aggregate from its constitutive materials. In this research an experimental study had been carried out to investigate the effect of using three types of materials (porcelain aggregate) and others sustainable materials (glass waste and granular activated carbon) as a partial replacement of fine aggregate. Four percentages had considered (0, 10, 15 and 20) % to achieve better understanding for the influence of these materials upon the compressive strength of RPC. Four curing ages had included in this study, these are; 7, 28, 60 and

... Show More
View Publication
Crossref (6)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
Some Properties of Concrete Containing Waste Brick As Partial Replacement Of Coarse Aggregate And Addition Of Nano Brick Powder
...Show More Authors
Abstract<p>The accumulation of construction and demolition waste is one of the major problems in modern construction. Hence, this research investigates the use of waste brick in concrete. Seven different concrete mixes were investigated in this study: a control concrete mix, three mixes with volumetric replacement (10, 20, and 30)% of natural aggregate with brick aggregate, and two mixes with the addition of nano brick powder at a percentage level of 5– 10% by weight of cementitious materials. And the last one was mixed with 10% nano brick and 10% coarse brick aggregate. The experimental results for the additive of nano brick powder showed an enhancement in mechanical properties (compressive, </p> ... Show More
View Publication Preview PDF
Scopus (11)
Crossref (11)
Scopus Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Civil Engineering Journal
Usage of EB-CFRP for Improved Flexural Capacity of Unbonded Post-Tensioned Concrete Members Exposed to Partially Damaged Strands
...Show More Authors

The study presents the performance of flexural strengthening of concrete members exposed to partially unbonded prestressing with a particular emphasis on the amount (0, 14.2, and 28.5%) of cut strands-symmetrical and asymmetrical damage. In addition to examining the influence of cut strands on the remaining capacity of post-tensioned unbonded members and the effectiveness of carbon fiber reinforced polymer laminates restoration, The investigated results on rectangular members subjected to a four-point static bending load based on the composition of the laminate affected the stress of the CFRP, the failure mode, and flexural strength and deflection are covered in this study. The experimental results revealed that the usage of CFRP la

... Show More
Scopus (8)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Journal Of Engineering
The Influence of Waste Plastic Fiber on the Characteristics of Light Weight Concrete with Expanded Polystyrene (EPS) as Aggregate
...Show More Authors

This research aims to create lightweight concrete mixtures containing waste from local sources, such as expanded polystyrene (EPS) beads and waste plastic fibers (WPFs), all are cheap or free in the Republic of Iraq and without charge. The modern, rigid, and mechanical properties of LWC were investigated, and the results were evaluated. Three mixtures were made, each with different proportions of plastic fibers (0.4%, 0.8%, 1.2%), in addition to a lightweight concrete mixture containing steak fibers (0.4%, 0.8%, 1.2%), in addition to a lightweight concrete mixture. It contains 20% EPS. The study found that the LWC caused by the addition of WPFs reduced the density (lightweight) of the concrete mixtures because EPS tends

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Key Engineering Materials
Push-Out Test of Steel-Concrete-Steel Composite Section for Pre-Installation and Post-Installation Techniques of Shear Connectors
...Show More Authors

Composite steel-concrete sections have a broad benefit through increasing structural strength as well as minimizing the self-loads. All past researches were concerned with pre-installed shear connectors (PRSC) in the manufacturing of composite sections. A new fabrication technique for steel-concrete-steel composite sections were presented in the current study by the post-installation shear connectors (POSC) passed-through an embedded polymerizing vinyl chloride (PVC) pipes. The performance of normal strength concrete prisms with a specified strength of 32 MPa connected to square steel tubes (SST) was investigated. Six specimens were fabricated in both methodologies, PRSC and POSC were experimentally tested by Push-out test. The spac

... Show More
View Publication
Scopus (11)
Crossref (11)
Scopus Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Engineering
Production Load–bearing Concrete Masonry Units by Using Recycled Waste Crushed Clay Bricks; A Review
...Show More Authors

There are serious environmental problems in all countries of the world, due to the waste material such as crushed clay bricks (CCB) and in huge quantities resulting from the demolition of buildings. In order to reduce the effects of this problem as well as to preserve natural resources, it is possible to work on recycling (CCB) and to use it in the manufacture of environmentally friendly loaded building units by replacing percentages in coarse aggregate by volume. It can be used as a powder and replacing of percentages in cement by weight and study the effect on the physical and mechanical properties of the concrete and the masonry unit. Evaluation of its performance through workability, dry density, compressive strength, thermal conduct

... Show More
View Publication Preview PDF
Crossref (1)
Crossref