In general, path-planning problem is one of most important task in the field of robotics. This paper describes the path-planning problem of mobile robot based on various metaheuristic algorithms. The suitable collision free path of a robot must satisfies certain optimization criteria such as feasibility, minimum path length, safety and smoothness and so on. In this research, various three approaches namely, PSO, Firefly and proposed hybrid FFCPSO are applied in static, known environment to solve the global path-planning problem in three cases. The first case used single mobile robot, the second case used three independent mobile robots and the third case applied three follow up mobile robot. Simulation results, which carried out using MATLAB 2014 environment, show the validity of the kinematic model for Nonholonomic mobile robot and demonstration that the proposed algorithm perform better than original PSO and FF algorithms under the same environmental constraints by providing the smoothness velocity and shortest path for each mobile robot.