Water is the basis of the existence of all kinds of life, so obtaining it with good quality represents a challenge to human existence and development especially in the desert and remote cities because these areas contain small populations and water purification requires great materials and huge amounts of fossil fuels resulting pollution of the environment. Cheap and environmentally friendly desalination methods have been done by using solar distillations. Passive solar stills have low yields, so in this research, the problem is overcome by connecting four heat pipes which are installed on the parabolic concentrator reflector with passive solar still to increase the temperature of hot water to more than 90°C, as a result, the yield increases. An extensive theory is studied to manufacture two systems: the first consists of passive solar still has dimensions are 1000 mm × 500 mm and the glass cover tilted at the angle 33°. It is approximately equal to the latitude of the city of Baghdad [(Latitude: (33.34° N) Longitude: (44.4° E)]. This gives 5.04 kg/m2.day, the second solar still which is associated with 4 heat pipes gives a water yield of about 7. 2 kg/m2.day. This means that the improvement in the daily production of distilled water is 50 % over the productivity of the passive solar still All results above are calculated when the depth of water is 1. 5 cm. In addition, heat balance for each part of the system is achieved and calculations of the performance of the solar still are done by using the program in the language of Matlab. All these results are compared with the experimental ones of different depths of water (1.5 cm, 2 cm, 3 cm, and 4 cm) which are taken from the experimental part to ensure the system reliability at different weather conditions in Baghdad throughout the year and to give a good approach. The system associated with heat pipes gives promising results and can be widely used for its abundant productivity and durability of its components. (TDS) and (pH) value are carried out in the laboratory and it is found that water is safe and pure for drinking.
In this paper, nanofluid of TiO2/water of concentrations of 0.002% and 0.004% volume was used. This nanofluid was flowing through heat exchanger of shell and concentric double tubes with counter current flow to the hot oil. The thermal conductivity of nanofluid is enhanced with increasing concentrations of the TiO2, this increment was by 19% and 16.5% for 0.004% and 0.002% volume respectively relative to the base fluid (water). Also the heat transfer coefficient of the nanofluid is increased as Reynold's number and nanofluid concentrations increased too. The heat transfer coefficient is increased by 66% and 49% for 0.004% and 0.002% volume respectively relative to the base fluid. This study showed that the friction
... Show MoreIn this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi
... Show MoreThe researches to discover useful ways to represent the agents and agent-based
systems are continuous. Unified Modeling Language (UML) is a visual modeling language
used for software and non software modeling systems. The aim of this paper is: using UML
class diagram to design treasury pharmaceuticals agent and explain its internal action. The
diagram explains the movement of the agent among other nodes to achieve user's requests
(external) after it takes them. The paper shows that it is easy to model the practical systems by
using agent UML when they are used in a complex environment.
Detection moving car in front view is difficult operation because of the dynamic background due to the movement of moving car and the complex environment that surround the car, to solve that, this paper proposed new method based on linear equation to determine the region of interest by building more effective background model to deal with dynamic background scenes. This method exploited the permitted region between cars according to traffic law to determine the region (road) that in front the moving car which the moving cars move on. The experimental results show that the proposed method can define the region that represents the lane in front of moving car successfully with precision over 94%and detection rate 86
... Show MoreA lotic ecosystem is considered a source of carbon dioxide (CO2) in the atmosphere where it becomes supersaturated with CO2, which contributes to the global carbon cycle. To enhance our comprehension of the roles of CO2 in rivers, an outdoor experiment was designed with controlled carbon source inputs to investigate the roles of the dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the phytoplankton community. Plastic enclosures were installed in the Tigris River within Baghdad for that goal. Samples were collected on the first day, as well as on the 5th and the 12th days from 14 enclosures. The enclosures were treated by artificial glucose (C6H12O6) (10, 20, 30mg/ l) as DOC sources, while sodium bicarbonate (NaHCO3) (1
... Show MoreIn this paper, an experimental analysis of conventional air-cooled and microchannel condensers in automotive vapor compression refrigeration cycle concerning heat transfer coefficient and energy using R134a as a refrigerant was presented. The performance of two condensers and cycles tested regarding ambient temperature which it was varied from 40oC to 65oC, while the indoor temperature and load have been set to be 23oC and 2200 W respectively. Results showed that the microchannel condenser has 224 % and 77 % higher refrigerant side and air side heat transfer coefficient respectively than the coefficients of the conventional condenser. Thus, the COP, in case of using the microchannel
... Show MoreIn this research, main types of optical coatings are presented which are used as covers for solar cells, these coatings are reflect the infrared (heat) from the solar cell to increase the efficiency of the cell (because the cell’s efficiency is inversely proportional to the heat), then the theoretical and mathematical description of these optical coatings are presented, and an optical design is designed to meet this objective, its optical transmittance was calculated using (MATLAB R2008a) and (Open Filters 1.0.2) programs
In this paper, the solar surface magnetic flux transport has been simulated by solving the diffusion–advection equation utilizing numerical explicit and implicit methods in 2Dsurface. The simulation was used to study the effect of bipolar tilted angle on the solar flux distribution with time. The results show that the tilted angle controls the magnetic distribution location on the sun’s surface, especially if we know that the sun’s surface velocity distribution is a dependent location. Therefore, the tilted angle parameter has distribution influence.