Preferred Language
Articles
/
joe-840
Wellbore Breakouts Prediction from Different Rock Failure Criteria
...Show More Authors

One of the wellbore instability problems in vertical wells are breakouts in Zubair oilfield. Breakouts, if exceeds its critical limits will produce problems such as loss circulation which will add to the non-productive time (NPT) thus increasing loss in costs and in total revenues. In this paper, three of the available rock failure criteria (Mohr-Coulomb, Mogi-Coulomb and Modified-Lade) are used to study and predict the occurrence of the breakouts. It is found that there is an increase over the allowable breakout limit in breakout width in Tanuma shaly formation and it was predicted using Mohr-Coulomb criterion. An increase in the pore pressure was predicted in Tanuma shaly formation, thus; a new mud weight and casing programs are proposed to overcome such problems in the drilling operations in field developments plans.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Prediction of Compressive Strength of Reinforced Concrete Structural Elements by Using Combined Non-Destructive Tests
...Show More Authors

This research is devoted to investigate relationship between both Ultrasonic Pulse Velocity and Rebound Number (Hammer Test) with cube compressive strength and also to study the effect of steel reinforcement on these relationships.
A study was carried out on 32 scale model reinforced concrete elements. Non destructive testing campaign (mainly ultrasonic and rebound hammer tests) made on the same elements. About 72 concrete cubes (15 X 15 X15) were taken from the concrete mixes to check the compressive strength.. Data analyzed.Include the possible correlations between non destructive testing (NDT) and compressive strength (DT) Statistical approach is used for this purpose. A new relationships obtained from correlations results is give

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Jun 28 2014
Journal Name
Iraqi Postgraduate Medical Journal
Comparism Between Transvaginal Cervical Length Measurement and Digital Examination in Prediction of Imminent preterm Delivery
...Show More Authors

BACKGROUND: Preterm labour is a major cause of perinatal morbidity and mortality, so it is important to predict preterm delivery using the clinical examination of the cervix and uterine contraction frequency. New markers for the prediction of preterm birth have been developed such as transvaginal ultrasound measurement of cervical length as this method is widely available. OBJECTIVE: To determine, whether transvaginal cervical length measurement predicts imminent preterm delivery better than digital cervical length measurement in women presented with preterm labour and intact membranes. PATIENTS AND METHODS: Two hundred women presented with preterm labour between 24 and 36+6 weeks of gestation were included in this study. All women subjecte

... Show More
View Publication
Publication Date
Sat Sep 30 2017
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Permeability Prediction By Classical and Flow Zone Indictor (FZI) Methods for an Iraqi Gas Field
...Show More Authors

The permeability is the most important parameter that indicates how efficient the reservoir fluids flow through the rock pores to the wellbore. Well-log evaluation and core measurements techniques are typically used to estimate it. In this paper, the permeability has been predicted by using classical and Flow zone indicator methods. A comparison between the two methods shows the superiority of the FZI method correlations, these correlations can be used to estimate permeability in un-cored wells with a good approximation.

View Publication Preview PDF
Publication Date
Fri Mar 29 2024
Journal Name
Iraqi Journal Of Science
Evaluating the Performance and Behavior of CNN, LSTM, and GRU for Classification and Prediction Tasks
...Show More Authors

     Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Engineering
Prediction of Municipal Solid Waste Generation Models Using Artificial Neural Network in Baghdad city, Iraq
...Show More Authors

The importance of Baghdad city as the capital of Iraq and the center of the attention of delegations because of its long history is essential to preserve its environment. This is achieved through the integrated management of municipal solid waste since this is only possible by knowing the quantities produced by the population on a daily basis. This study focused to predicate the amount of municipal solid waste generated in Karkh and Rusafa separately, in addition to the quantity produced in Baghdad, using IBM SPSS 23 software. Results that showed the average generation rates of domestic solid waste in Rusafa side was higher than that of Al-Karkh side because Rusafa side has higher population density than Al-Karkh side. T

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Feb 16 2023
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Phytochemical Screening of Petroleum Ether Fractions by GC/MS and Isolation of Lupeol from Two Different Parts of Iraqi Leucaena leuco-cephala. (Conference Paper )#
...Show More Authors

Abstract

This work is considered the first study for the components of the Iraqi Leucaena leucocephala plant, where the different phytochemical compounds that present in the aerial parts were identified by using the gas chromatography/mass spectrometry technique (GC/MS). The type of the components and their concentration will differ according to the part of the plant used and the method of extraction (hot and cold). This study made a comparison in lupeol concentration that was identified and isolated from petroleum ether fractions of Leucaena leucocephala by using Gas Chromatography/Mass Spectrometry (GC/MS), High-performance thin-layer chromatography (HPTLC), and Preparative High-Performance Li

... Show More
View Publication
Scopus (6)
Scopus Crossref
Publication Date
Thu Aug 29 2024
Journal Name
European Journal Of Orthodontics
Poly-ether-ether-ketone (PEEK) versus dead-soft coaxial bonded retainers: a randomized clinical trial. Part 1. Stability, retainer failure, and participant satisfaction
...Show More Authors
Abstract<sec> <title>Background

Poly-ether-ether-ketone (PEEK) was introduced in dentistry as an alternative to metal alloys.

Objective

To assess the effectiveness of PEEK-fixed retainers in preserving the stability of mandibular anterior and participant satisfaction as compared to the Dead-soft coaxial fixed retainer (DSC).

Trial design

A single-centre, two-arm parallel groups

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Deep Learning Techniques in the Cancer-Related Medical Domain: A Transfer Deep Learning Ensemble Model for Lung Cancer Prediction
...Show More Authors

Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Wed May 31 2023
Journal Name
International Journal Of Sustainable Development And Planning
Prediction of Formal Transformations in City Structure (Kufa as a Model) Based on the Cellular Automation Model and Markov Chains
...Show More Authors

The research utilizes data produced by the Local Urban Management Directorate in Najaf and the imagery data from the Landsat 9 satellite, after being processed by the GIS tool. The research follows a descriptive and analytical approach; we integrated the Markov chain analysis and the cellular automation approach to predict transformations in city structure as a result of changes in land utilization. The research also aims to identify approaches to detect post-classification transformations in order to determine changes in land utilization. To predict the future land utilization in the city of Kufa, and to evaluate data accuracy, we used the Kappa Indicator to determine the potential applicability of the probability matrix that resulted from

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Sat Feb 15 2025
Journal Name
Iraqi Journal Of Science
Effect of Aluminum Dust Particles on Plasma Parameters at Different Gas Pressure with Different Dust Contents
...Show More Authors

In this work, the effect of aluminum (Al) dust particles on the DC discharge plasma properties in argon was investigated. A magnetron is placed behind the cathode at different pressures and with varying amounts of Al. The plasma temperature (Te) and density (ne) were calculated using the Boltzmann equation and Stark broadening phenomena, which are considered the most important plasma variables through which the other plasma parameters were calculated. The measurements showed that the emission intensity decreases with increasing pressure from 0.06 to 0.4 Torr, and it slightly decreases with the addition of the NPs. The calculations showed that the ne increased and Te decreased with pressure. Both Te and ne were reduced by increasing

... Show More
View Publication Preview PDF
Scopus Crossref