This paper describes the application of consensus optimization for Wireless Sensor Network (WSN) system. Consensus algorithm is usually conducted within a certain number of iterations for a given graph topology. Nevertheless, the best Number of Iterations (NOI) to reach consensus is varied in accordance with any change in number of nodes or other parameters of . graph topology. As a result, a time consuming trial and error procedure will necessary be applied
to obtain best NOI. The implementation of an intellig ent optimization can effectively help to get the optimal NOI. The performance of the consensus algorithm has considerably been improved by the inclusion of Particle Swarm Optimization (PSO). As a case study, variable number of nodes in a network with a random graph topology has been considered. Simulation results show that significant reduction in the NOI and power consumption has been achieved, where it decreased the NOI about 40 iteration; when using PSO for different number of nodes in the specified network.
<p>Generally, The sending process of secret information via the transmission channel or any carrier medium is not secured. For this reason, the techniques of information hiding are needed. Therefore, steganography must take place before transmission. To embed a secret message at optimal positions of the cover image under spatial domain, using the developed particle swarm optimization algorithm (Dev.-PSO) to do that purpose in this paper based on Least Significant Bits (LSB) using LSB substitution. The main aim of (Dev. -PSO) algorithm is determining an optimal paths to reach a required goals in the specified search space based on disposal of them, using (Dev.-PSO) algorithm produces the paths of a required goals with most effi
... Show MoreColor image compression is a good way to encode digital images by decreasing the number of bits wanted to supply the image. The main objective is to reduce storage space, reduce transportation costs and maintain good quality. In current research work, a simple effective methodology is proposed for the purpose of compressing color art digital images and obtaining a low bit rate by compressing the matrix resulting from the scalar quantization process (reducing the number of bits from 24 to 8 bits) using displacement coding and then compressing the remainder using the Mabel ZF algorithm Welch LZW. The proposed methodology maintains the quality of the reconstructed image. Macroscopic and
Signal denoising is directly related to sample estimation of received signals, either by estimating the equation parameters for the target reflections or the surrounding noise and clutter accompanying the data of interest. Radar signals recorded using analogue or digital devices are not immune to noise. Random or white noise with no coherency is mainly produced in the form of random electrons, and caused by heat, environment, and stray circuitry loses. These factors influence the output signal voltage, thus creating detectable noise. Differential Evolution (DE) is an effectual, competent, and robust optimisation method used to solve different problems in the engineering and scientific domains, such as in signal processing. This paper looks
... Show MoreThis paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that
Human posture estimation is a crucial topic in the computer vision field and has become a hotspot for research in many human behaviors related work. Human pose estimation can be understood as the human key point recognition and connection problem. The paper presents an optimized symmetric spatial transformation network designed to connect with single-person pose estimation network to propose high-quality human target frames from inaccurate human bounding boxes, and introduces parametric pose non-maximal suppression to eliminate redundant pose estimation, and applies an elimination rule to eliminate similar pose to obtain unique human pose estimation results. The exploratory outcomes demonstrate the way that the proposed technique can pre
... Show MoreBackground: Sprite coding is a very effective technique for clarifying the background video object. The sprite generation is an open issue because of the foreground objects which prevent the precision of camera motion estimation and blurs the created sprite. Objective: In this paper, a quick and basic static method for sprite area detection in video data is presented. Two statistical methods are applied; the mean and standard deviation of every pixel (over all group of video frame) to determine whether the pixel is a piece of the selected static sprite range or not. A binary map array is built for demonstrating the allocated sprite (as 1) while the non-sprite (as 0) pixels valued. Likewise, holes and gaps filling strategy was utilized to re
... Show MoreThe efficiency of the Honeywords approach has been proven to be a significant tool for boosting password security. The suggested system utilizes the Meerkat Clan Algorithm (MCA) in conjunction with WordNet to produce honeywords, thereby enhancing the level of password security. The technique of generating honeywords involves data sources from WordNet, which contributes to the improvement of authenticity and diversity in the honeywords. The method encompasses a series of consecutive stages, which include the tokenization of passwords, the formation of alphabet tokens using the Meerkat Clan Algorithm (MCA), the handling of digit tokens, the creation of unique character tokens, and the consolidation of honeywords. The optimization of t
... Show More