In this study, the effect of intersecting ribs with inclined ribs on the heat transfer and flow characteristics of a high aspect ratio duct has been numerically investigated. The Relative roughness pitch (P/e) is 10 and the Reynolds number range from 35,700 to 72,800. ANSYS (Fluent-Workbench 18.0) software has been utilized to solve the Reynolds averaged Navier-Stokes (RANS) equations with the Standard k-ε turbulence model. Three ribbed models have been used in this study. Model 1 which is a just inclined ribs, Model 2 which has a single longitudinal rib at the center with inclined ribs and Model 3 which has two longitudinal ribs at the sides. The results showed that the heat transfer rate has been enhanced when the intersecting ribs are used. Model 3 has achieved the highest overall thermal performance. The increasing in Nusselt number ratio (Nu /Nus ) for Model 3 and 2, relative to Model 1, are 13.19% and 7.03%, respectively. Consequently, the hybridizing by intersecting ribs with inclined ribs is considered as an advantageous technique to enhance the heat transfer.
This work investigates experimentally the effect of using a skirt with a square foundation of 100 mm width resting on dry gypseous soil (i.e., loose soil with 33% relative density), and subjected to an inclined load. Previous works did not study the use square skirted foundation rested on gypseous soil and subjected to inclined load. The investigated soil was brought from Tikrit city with 59% gypsum content. Standard physical and chemical tests on selected soil were carried out. Model laboratory tests were carried out to determine the effect of using a skirt with a square foundation on the load-settlement behavior of gypseous soil and subjected to inclined load with various Skirt depth (Ds) to foundation width (B) ratio
... Show MorePhosphorus (P) is an element that is potatoes require in large amounts. Soil pH is a crucial factor impacting phosphorus availability in potato production. This study was conducted to evaluate the influence of P application rates on the P efficiency for tuber yield, specific gravity, and P uptake. Additionally, the relationship between soil pH and total potato tuber yield was determined. Six rates of P fertilization (0–280 kg P ha−1) were applied at twelve different sites across Northern Maine. Yield parameters were not responsive to P application rates. However, regression analysis showed that soil pH was significantly correlated with total potato tuber yield(R2 = 0.38). Sites with soil pH values < 6 had total tuber yields,
... Show MoreThis paper presents a numerical simulation of the flow around elliptic groynes by using CFD software. The flow was simulated in a flume with 4m long, 0.4m wide, and 0.175m high with a constant bed slope. Moreover, the first Groyne placed at 1m from the flow inlet with a constant the Groyne height of 10cm and a 1cm thickness, and the width of Groynes equals 7cm. A submergence ratio of the elliptic Groynes of 75% was assumed, corresponding to a discharge of 0.0057m3/sec. The CFD model showed a good ability to simulate the flow around Groynes with good accuracy. The results of CFD software showed that when using double elliptic Groy
... Show MoreThe map of permeability distribution in the reservoirs is considered one of the most essential steps of the geologic model building due to its governing the fluid flow through the reservoir which makes it the most influential parameter on the history matching than other parameters. For that, it is the most petrophysical properties that are tuned during the history matching. Unfortunately, the prediction of the relationship between static petrophysics (porosity) and dynamic petrophysics (permeability) from conventional wells logs has a sophisticated problem to solve by conventional statistical methods for heterogeneous formations. For that, this paper examines the ability and performance of the artificial intelligence method in perme
... Show More<p>The current work investigated the combustion efficiency of biodiesel engines under diverse ratios of compression (15.5, 16.5, 17.5, and 18.5) and different biodiesel fuels produced from apricot oil, papaya oil, sunflower oil, and tomato seed oil. The combustion process of the biodiesel fuel inside the engine was simulated utilizing ANSYS Fluent v16 (CFD). On AV1 diesel engines (Kirloskar), numerical simulations were conducted at 1500 rpm. The outcomes of the simulation demonstrated that increasing the compression ratio (CR) led to increased peak temperature and pressures in the combustion chamber, as well as elevated levels of CO<sub>2</sub> and NO mass fractions and decreased CO emission values un
... Show MoreThe purpose of this paper is to gain a good understanding about wake region behind the car body due to the aerodynamic effect when the air flows over the road vehicle during its movement. The main goal of this study is to discuss the effect of the geometry on the wake region and the aerodynamic drag coefficient. Results will be achieved by using two different shapes, which are the fastback and the notchback. The study will be implemented by the Computational Fluid Dynamic (CFD) by using STAR-CCM+® software for the simulation. This study investigates the steady turbulent flow using k-epsilon turbulence model. The results obtained from the simulation show that the region of the air separation behind the vehicle
... Show More