Preferred Language
Articles
/
joe-821
Rehabilitation of Reinforced Concrete Deep Beam by Epoxy Resin
...Show More Authors

This investigation presents an experimental and analytical study on the behavior of reinforced concrete deep beams before and after repair. The original beams were first loaded under two points load up to failure, then, repaired by epoxy resin and tested again. Three of the test beams contains shear reinforcement and the other two beams have no shear reinforcement. The main variable in these beams was the percentage of longitudinal steel reinforcement (0, 0.707, 1.061, and 1.414%). The main objective of this research is to investigate the possibility of restoring the full load carrying capacity of the reinforced concrete deep beam with and without shear reinforcement by using epoxy resin as the material of repair. All beams were tested with shear span-depth ratio 2.2. An analytical study was made to show the behavior of a sample of test beam at higher stages of loadings before and after repair. The test results showed that the epoxy resin used for repairing was very efficient in restoring full capacity of failed beams. Moreover, epoxy resin increased the strength capacity of the original beams by about 14% to 40%. On the other hand, the increase in the longitudinal reinforcement increased significantly the ultimate capacity of deep beams before and after repair.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jul 10 2023
Journal Name
Journal Of Engineering
Bearing Capacity of a Strip Model Footing on Loose Sand Reinforced With Pomegranate Sticks Mat
...Show More Authors

A series of laboratory model tests has been carried out to investigate the using of pomegranate sticks mat as reinforcement to increase the bearing capacity of footing on loose sand. The influence of depth and length of pomegranate sticks layer was examined. In the present research single layer of pomegranate sticks reinforcement was used to strengthen the loose sand stratum beneath the strip footing. The dimensions of the used foundation were 4*20 cm. The reinforcement layer has been embedded at depth 2, 4 and 8 cm under surcharge stresses . Reinforcing layer with length of 8 and 16 cm were used. The final model test results indicated that the inclusion of pomegranate sticks reinforcement is very effective in improvement the loading cap

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed May 01 2019
Journal Name
Iop Conference Series: Materials Science And Engineering
Effect of sustainable palm fiber on high strength concrete properties
...Show More Authors
Abstract<p>Date palm fiber is one of the common wastes available in the M. E. countries essentially Iraq. The aim of search to investigate the performance and effects of fiber date palm on the mechanical properties of high strength concrete, this fiber was used in three ratio 2, 4 and 6 % by vol. of concrete at ages of (7, 28, 90) days. Results demonstrated improvement in the compressive strength increased 19.2 %, 23.6%, 24.9 % for 2%, 4%, 6% of fiber respectively at age 28 days. Flexural strength increases 47.6%, 66.2%, 93.8% form (2,4,6) % of fiber respectively at age 28 days. Density increase about 0.41%, 0, 61 % 0.69 % for (2,4,6) % of fiber respectively at age 28. Absorption water decrease </p> ... Show More
View Publication
Crossref (6)
Crossref
Publication Date
Fri Jun 02 2017
Journal Name
Kufa Journal Of Engineering
COMPRESSIVE STRENGTH OF CONCRETE CONTAINING WATER ABSORPTION POLYMER BALLS (WAPB)
...Show More Authors

Water absorbent polymers (WAP) are new component in producing building materials. They provide internal curing which reduces autogenous cracking, eliminates autogenous shrinkage, mortar strength increased, enhance early age strength to withstand strain, improve the durability, introduce higher early age compressive strength, have higher performance and reduce the effect of insufficient external curing. This research used different percent of polymer balls to choose the percent that provides good development in compressive strength with time for both water and air curing. The water absorption polymer balls in this research have the ability to absorb water and after usage in concrete they spill out the water (internal curing) and shri

... Show More
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
EMBEDDED LENGTH OF STEEL BARS IN SELF COMPACTED CONCRETE (SCC)
...Show More Authors

Experimental research was carried out on eight reinforced concrete beams to study the embedded length of the longitudinal reinforcement. Six beams were casted using self compacted concrete, and the two other beams were casted using normal concrete. The test was carried out on beams subjected to two point loads. The strain and the slip of the main reinforcement have been measured by using grooves placed during casting the beams at certain places. The measured strain used to calculate the longitudinal stresses (bond stress) surrounding the bar reinforcement, The study was investigated the using of self compacted concrete SCC on the embedded length of reinforcing bars, and comparing the results with normal concrete. The test results show th

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Feb 02 2019
Journal Name
Journal Of Engineering Sciences And Technology
Partially Prestressed Concrete Beams under Limited Cycles of Repeated Loading
...Show More Authors

View Publication
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Performance of Self-Compacting Concrete Slab with Grinded Local Rocks
...Show More Authors

The effect of using grinded rocks of (quartzite and porcelanite) as powder of (10 and 20) % replacement by weight of cement for self-compacting concrete slabs was investigated in this study. Five slabs with 15 concrete cubes were tested experimentally at 28 days to study the compressive strength, ultimate load, ultimate deflection, ductility, crack load and steel strain. The test results show that, the compressive strength improvement when replacement of local rock powder reached to (7.3, 4.22) % for (10 and 20) % quartzite powder and (11.3, 16.1) % for (10 and 20) % porcelanite powder, respectively compared to the reference specimen. The ultimate load percentage increase for slabs with (10 and 20) % rep

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Dec 11 2017
Journal Name
The First Mohesr And Hced Iraqi Scholars Conference In Australasia
Creep Strain Development of Self-compacting Portland-Limestone Cement Concrete
...Show More Authors

Prediction of the structural response of reinforced concrete to the time-dependent, creep and shrinkage, volume changes is complex. Creep is usually determined by measuring the change, with time, in the strain of specimens subjected to a constant stress and stored under appropriate conditions. This paper brings into view the development of creep strain for four self-compacting concrete mixes: A40, AL40, B60 and BL60 (where 40 and 60 represent the compressive strength level at 28 days and L indicates to Portlandlimestone cement). Specimens were put under sustained load and exposed to controlled conditions in a creep chamber (ASTM C512). The test results showed that normal strength Portland-limestone mixes have yielded lower ultimate c

... Show More
Publication Date
Thu Dec 01 2022
Journal Name
Civil And Environmental Engineering
Performance of Prestressed Concrete Hunched Beams with Multi-Quadrilaterals Openings
...Show More Authors
Abstract<p>A long-span Prestressed Concrete Hunched Beam with Multi-Quadrilateral Opening has been developed as an alternative to steel structural elements. An experimental program was created and evaluated utilizing a single mid-span monotonic static load on simply supported beams, which included six beams with openings and the solid control beam without openings, to investigate the performance of such beams. The number and height of the quadrilateral openings are the variables to consider. According to test results, the presence of openings in the prestressed concrete hunched beam with multi-quadrilateral opening did not considerably affect their ultimate load capacity with respect to a contro</p> ... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
PROPERTIES OF HARDENED CONCRETE USING CRUSHED CLAY BRICK AS AGGREGATES
...Show More Authors

This paper provides the result of an investigation to use of crushed clay brick as
aggregates in producing concrete. Eight different crushed clay brick aggregate concretes were
used in this investigation. Compressive strength, splitting tensile strength and pulse velocity of
crushed clay brick aggregates concrete were determined and compare to natural aggregate
concrete. The compressive strength of crushed clay brick aggregates concretes were always
lower than the compressive strength of natural aggregates concrete regardless the age of
concrete, but the crushed clay brick aggregates concrete showed better performance as the age of
concrete increases and average reduction in compressive strength were 33.5% at the age

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Tue Apr 07 2009
Journal Name
The 6th Engineering Conference
Bond-Slip Relationship of Reinforcing Steel Bars Embedded in Concrete
...Show More Authors

An experimental investigation based on thirty three simple pullout cylinder specimens was conducted to study the bond-slip trend between concrete and steel reinforcement. Plain and deformed steel reinforcement bars were used in this investigation. The effect of bar diameter, concrete compressive strength and development length on bond-slip relation was detected. The results showed that the bond strength increases with increasing of compressive strength and with decreasing of bar diameter and development length. A nonlinear regression analysis for the experimental results yields in a mathematical correlation to predict the bond strength as a function of concrete compressive strength, reinforcing bar diameter and its yield stress. The minimum

... Show More