Preferred Language
Articles
/
joe-818
Design of New Hybrid Neural Controller for Nonlinear CSTR System based on Identification

This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm namely Particle Swarm Optimization (PSO) algorithm. The numerical simulation results show that the hybrid NARMA-L2 controller with PSO algorithm is more accurate than BPA in terms of achieving fast learning and adjusting the parameters model with minimum number of iterations, minimum number of neurons in the hybrid network and the smooth output one step ahead prediction controller response for the nonlinear CSTR system without oscillation.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Aug 03 2024
Journal Name
Proceedings Of Ninth International Congress On Information And Communication Technology
Offline Signature Verification Based on Neural Network

The investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o

... Show More
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
An Effective Hybrid Deep Neural Network for Arabic Fake News Detection

Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural

... Show More
Scopus (10)
Crossref (4)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Feb 27 2021
Journal Name
Iraqi Journal Of Science
Design and Implementation of an IoT-based Transactional System for Quality Management

The spread of Coronavirus has forced populations around the globe to adopt strict measures such as lockdown, home quarantine, and home office. Moreover, in the current development of network communications, people can exploit internet and intranet features in many systems that need to be faster, more efficient, and available on time. Furthermore, with the benefits of using internet-of-things (IoT), through which things are generated, gained, discovered, and proposed without interference, the user could receive the last status without exertion and direct contact (i.e., in a contactless manner). These specifications can be used in a transaction system. This paper proposes an electronic transaction system (ETS) as a replacement for the curr

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Journal Of Engineering
Spike neural network as a controller in SDN network

The paper proposes a methodology for predicting packet flow at the data plane in smart SDN based on the intelligent controller of spike neural networks(SNN). This methodology is applied to predict the subsequent step of the packet flow, consequently reducing the overcrowding that might happen. The centralized controller acts as a reactive controller for managing the clustering head process in the Software Defined Network data layer in the proposed model. The simulation results show the capability of Spike Neural Network controller in SDN control layer to improve the (QoS) in the whole network in terms of minimizing the packet loss ratio and increased the buffer utilization ratio.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Mon Jun 19 2017
Journal Name
Arabian Journal For Science And Engineering
Scopus (27)
Crossref (24)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu May 04 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Design Feed Forward Neural Network to Determine Doses of the Decongestant for Cold Pills

The aim of this paper is to design feed forward neural network to determine the effects of
cold pills and cascades from simulation the problem to system of first order initial value
problem. This problem is typical of the many models of the passage of medication throughout
the body. Designer model is an important part of the process by which dosage levels are set.
A critical factor is the need to keep the levels of medication high enough to be effective, but
not so high that they are dangerous.

View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Applying Cognitive Methodology in Designing On-Line Auto-Tuning Robust PID Controller for the Real Heating System

A novel design and implementation of a cognitive methodology for the on-line auto-tuning robust PID controller in a real heating system is presented in this paper. The aim of the proposed work is to construct a cognitive control methodology that gives optimal control signal to the heating system, which achieve the following objectives: fast and precise search efficiency in finding the on- line optimal PID controller parameters in order to find the optimal output temperature response for the heating system. The cognitive methodology (CM) consists of three engines: breeding engine based Routh-Hurwitz criterion stability, search engine based particle
swarm optimization (PSO) and aggregation knowledge engine based cultural algorithm (CA)

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
A New Model Design for Combating COVID -19 Pandemic Based on SVM and CNN Approaches

       In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from      Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial

... Show More
Scopus (4)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed May 25 2022
Journal Name
Iraqi Journal Of Science
A Pseudo-Random Number Generator Based on New Hybrid LFSR and LCG Algorithm

      In many areas, such as simulation, numerical analysis, computer programming, decision-making, entertainment, and coding, a random number input is required. The pseudo-random number uses its seed value. In this paper, a hybrid method for pseudo number generation is proposed using Linear Feedback Shift Registers (LFSR) and Linear Congruential Generator (LCG). The hybrid method for generating keys is proposed by merging technologies. In each method, a new large in key-space group of numbers were generated separately. Also, a higher level of secrecy is gained such that the internal numbers generated from LFSR are combined with LCG (The adoption of roots in non-linear iteration loops). LCG and LFSR are linear structures and outputs

... Show More
Scopus (8)
Crossref (5)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Design and Implementation ofICT-Based Recycle-Rewarding System for Green Environment

This paper proposes a collaborative system called Recycle Rewarding System (RRS), and focuses on the aspect of using information communication technology (ICT) as a tool to promote greening. The idea behind RRS is to encourage recycling collectors by paying them for earning points. In doing so, both the industries and individuals reap the economical benefits of such system. Finally, and more importantly, the system intends to achieve a green environment for the Earth. This paper discusses the design and implementation of the RRS, involves: the architectural design, selection of components, and implementation issues. Five modules are used to construct the system, namely: database, data entry, points collecting and recording, points reward

... Show More
Crossref (2)
Crossref
View Publication Preview PDF