Preferred Language
Articles
/
joe-818
Design of New Hybrid Neural Controller for Nonlinear CSTR System based on Identification

This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm namely Particle Swarm Optimization (PSO) algorithm. The numerical simulation results show that the hybrid NARMA-L2 controller with PSO algorithm is more accurate than BPA in terms of achieving fast learning and adjusting the parameters model with minimum number of iterations, minimum number of neurons in the hybrid network and the smooth output one step ahead prediction controller response for the nonlinear CSTR system without oscillation.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Electronics
Downlink Training Sequence Design Based on Waterfilling Solution for Low-Latency FDD Massive MIMO Communications Systems

Future generations of wireless communications systems are expected to evolve toward allowing massive ubiquitous connectivity and achieving ultra-reliable and low-latency communications (URLLC) with extremely high data rates. Massive multiple-input multiple-output (m-MIMO) is a crucial transmission technique to fulfill the demands of high data rates in the upcoming wireless systems. However, obtaining a downlink (DL) training sequence (TS) that is feasible for fast channel estimation, i.e., meeting the low-latency communications required by future generations of wireless systems, in m-MIMO with frequency-division-duplex (FDD) when users have different channel correlations is very challenging. Therefore, a low-complexity solution for

... Show More
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
International Middle Eastern Simulation And Modelling Conference 2022, Mesm 2022,
Scopus
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Approach for New COVID-19 Cases Using Recurrent Neural Networks and Long-Short Term Memory

     This research aims to predict new COVID-19 cases in Bandung, Indonesia. The system implemented two types of deep learning methods to predict this. They were the recurrent neural networks (RNN) and long-short-term memory (LSTM) algorithms. The data used in this study were the numbers of confirmed COVID-19 cases in Bandung from March 2020 to December 2020. Pre-processing of the data was carried out, namely data splitting and scaling, to get optimal results. During model training, the hyperparameter tuning stage was carried out on the sequence length and the number of layers. The results showed that RNN gave a better performance. The test used the RMSE, MAE, and R2 evaluation methods, with the best numbers being  0.66975075, 0.470

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Mobile Position Estimation based on Three Angles of Arrival using an Interpolative Neural Network

In this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf

... Show More
Publication Date
Fri Dec 23 2011
Journal Name
International Journal Of The Physical Sciences
Scopus (16)
Crossref (4)
Scopus Crossref
View Publication
Publication Date
Thu Oct 13 2022
Journal Name
Computation
A Pattern-Recognizer Artificial Neural Network for the Prediction of New Crescent Visibility in Iraq

Various theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp

... Show More
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Engineering
Upgrading of Alum Preparation and Dosing Unit for Sharq Dijla Water Treatment Plant by Using Programmable Logic Controller System

One of the important units in Sharq Dijla Water Treatment Plant (WTP) first and second extensions are the alum solution preparation and dosing unit. The existing operation of this unit accomplished manually starting from unloading the powder alum in the preparation basin and ending by controlling the alum dosage addition through the dosing pumps to the flash mix chambers. Because of the modern trend of monitoring and control the automatic operation of WTPs due to the great benefits that could be gain from optimum equipment operation, reducing the operating costs and human errors. This study deals with how to transform the conventional operation to an automatic monitoring and controlling system depending on a Programmable

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 10 2023
Journal Name
Mathematics
Hamilton–Jacobi Inequality Adaptive Robust Learning Tracking Controller of Wearable Robotic Knee System

A Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton

... Show More
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jan 17 2017
Journal Name
International Journal Of Science And Research (ijsr)
Publication Date
Wed May 03 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Designing Feed Forward Neural Network for Solving Linear VolterraIntegro-Differential Equations

The aim of this paper, is to design multilayer Feed Forward Neural Network(FFNN)to find the approximate solution of the second order linear Volterraintegro-differential equations with boundary conditions. The designer utilized to reduce the computation of solution, computationally attractive, and the applications are demonstrated through illustrative examples.

View Publication Preview PDF